`

PHP无限分类-左右值实现

    博客分类:
  • php
阅读更多

包含(移动多个节点;移动单个节点;删除多个节点;删除单个节点;新增节点),另附数据库表结构~有问题可以留言(www.webyang.net)。

 

 一、db sql语句

//db used for php无限分类
create table tree(
    id int(10) not null primary key auto_increment,
    name varchar(255) not null,
    lft int(10) not null default 0,
    rgt int(10) not null default 0,
    status int(1) not null default 0,
    index lft (`lft`),
    index rgt (`rgt`),
    index status(`status`)
)charset utf8;

insert into tree value (null,'Food',1,18,0);
insert into tree value (null,'Fruit',2,11,0);
insert into tree value (null,'Red',3,6,0);
insert into tree value (null,'Cherry',4,5,0);
insert into tree value (null,'Yellow',7,10,0);
insert into tree value (null,'Banana',8,9,0);
insert into tree value (null,'Meat',12,17,0);
insert into tree value (null,'Beef',13,14,0);
insert into tree value (null,'Pork',15,16,0);

二、php文件

<?php
error_reporting(0);
/*
                         1 Food 18
            +------------------------------+
        2 Fruit 11                     12 Meat 17
    +-------------+                 +------------+
3 Red 6      7 Yellow 10       13 Beef 14   15 Pork 16
4 Cherry 5    8 Banana 9

descendants = (right – left - 1) / 2
*/

/**
 *用于移动一个节点(包括子节点)
 *@param array $pdata = array('id'=>主键,'root'=>名称) 二选一 父节点(为空时插入最大的父节点)
 *@param array $ndata = array('id'=>主键,'root'=>名称) 二选一 下一个兄弟节点(没有兄弟的时候就不用)
 *@param array $cdata = array('id'=>主键,'root'=>名称) 二选一 当前待移动的节点
 */
function move_tree_all($pdata=array(),$ndata=array(),$cdata=array()) {
    $cid   = $cdata['id'] ? intval($cdata['id']) : '';
    $croot = $cdata['root'];
    if(!$cid && !$croot) return;

    //需自加判断
    //1、cdata不能为顶级
    //2、cdata不能比$pdata等级高

    $adata = get_tree_all($cdata); //获取当前移动节点的所有节点
    delete_tree_all($cdata,1); //逻辑删除当前移动节点的所有节点

    foreach($adata as $k => $val) {
        if($k != 0) {
            $pdata = array('root'=>$val['parent']);
            insert_tree($pdata,'',$val['name'],1);
        } else { //first
            insert_tree($pdata,$ndata,$val['name'],1);
        }
    }
}

/**
 *用于移动一个节点(不包括子节点)
 *@param array $pdata = array('id'=>主键,'root'=>名称) 二选一 父节点(为空时插入最大的父节点)
 *@param array $ndata = array('id'=>主键,'root'=>名称) 二选一 下一个兄弟节点(没有兄弟的时候就不用)
 *@param array $cdata = array('id'=>主键,'root'=>名称) 二选一 当前待移动的节点
 */
function move_tree_item($pdata=array(),$ndata=array(),$cdata=array()) {
    $cid   = $cdata['id'] ? intval($cdata['id']) : '';
    $croot = $cdata['root'];
    if(!$cid && !$croot) return;

    //需自加判断
    //1、cdata不能为顶级

    if(!$croot) {
        $sql = "SELECT name from tree where id = $cid";
        $result = mysql_query($sql);
        $row = mysql_fetch_assoc($result);
        $croot = $row['name'];
        unset($sql);
    }

    delete_tree_item($cdata,1);
    insert_tree($pdata,$ndata,$croot,1);
}

/**
 *用于插入一个节点
 *@param array $pdata = array('id'=>主键,'root'=>名称) 二选一 父节点(为空时插入最大的父节点)
 *@param array $ndata = array('id'=>主键,'root'=>名称) 二选一 下一个兄弟节点(没有兄弟的时候就不用)
 *@param string $name string 新插入的名称
 *@param int $update 默认为空,为1时更新插入
 */
function insert_tree($pdata=array(),$ndata=array(),$name,$update='') {
    if(!$name) return;

    $pid   = $pdata['id'] ? intval($pdata['id']) : '';
    $proot = $pdata['root'];

    $nid   = $ndata['id'] ? intval($ndata['id']) : '';
    $nroot = $ndata['root'];

    //有父无兄(最小的子节点,父节点的最后一个儿子)
    if(($pid || $proot) && !($nid || $nroot)) {
        $sql    =  $pid ? "SELECT lft, rgt FROM tree WHERE id = '{$pid}';" : "SELECT lft, rgt FROM tree WHERE name = '{$proot}';";
        $result = mysql_query($sql);
        $row    = mysql_fetch_assoc($result);
        unset($sql);

        //新节点
        $lft  = $row['rgt'];
        $rgt  = $lft+1;
        if(!$update) {
            $sql  = "insert into tree values (null,'{$name}',$lft,$rgt,0);";
            $sql1 = "update tree set rgt = rgt+2 where rgt >= {$row['rgt']}";
            $sql2 = "update tree set lft = lft+2 where lft >= {$row['rgt']}";
        } else {
            $sql  = "update tree set lft=$lft,rgt=$rgt,status=0 where name ='{$name}';";
            $sql1 = "update tree set rgt = rgt+2 where status =0 and rgt >= {$row['rgt']}";
            $sql2 = "update tree set lft = lft+2 where status =0 and lft >= {$row['rgt']}";
        }
        
        mysql_query($sql1);
        mysql_query($sql2);
        mysql_query($sql); //last add new data
    }

    //有父有兄
    if(($pid || $proot) && ($nid || $nroot)) {
        $sql    =  $nid ? "SELECT lft, rgt FROM tree WHERE id = '{$nid}';" : "SELECT lft, rgt FROM tree WHERE name = '{$nroot}';";
        $result = mysql_query($sql);
        $row    = mysql_fetch_assoc($result);
        unset($sql);

        //新节点
        $lft  = $row['lft'];
        $rgt  = $lft+1;
        if(!$update) {
            $sql  = "insert into tree values (null,'{$name}',$lft,$rgt,0);";
            $sql1 = "update tree set rgt = rgt+2 where rgt >= {$row['lft']};";
            $sql2 = "update tree set lft = lft+2 where lft >= {$row['lft']};";
        } else {
            $sql  = "update tree set lft=$lft,rgt=$rgt,status=0 where name ='{$name}';";
            $sql1 = "update tree set rgt = rgt+2 where status = 0 and rgt >= {$row['lft']};";
            $sql2 = "update tree set lft = lft+2 where status = 0 and lft >= {$row['lft']};";
        }
        mysql_query($sql1);
        mysql_query($sql2);
        mysql_query($sql); //last add new data
    }

    //无父无兄(大佬)
    if(!($pid || $proot) && !($nid || $nroot)) {
        $sql    =  "SELECT max(`rgt`) as rgt FROM tree;";
        $result = mysql_query($sql);
        $row    = mysql_fetch_assoc($result);
        unset($sql);

        //新节点
        $lft  = 1;
        $rgt  = $row['rgt']+2;
        if(!$update) {
            $sql  = "insert into tree values (null,'{$name}',$lft,$rgt,0);";
            $sql1 = "update tree set rgt = rgt+1";
            $sql2 = "update tree set lft = lft+1";
        } else {
            $sql  = "update tree set lft=$lft,rgt=$rgt,status=0 where name ='{$name}';";
            $sql1 = "update tree set rgt = rgt+1 where status = 0";
            $sql2 = "update tree set lft = lft+1 where status = 0";
        }
        
        mysql_query($sql1);
        mysql_query($sql2);
        mysql_query($sql); //last add new data
    }
   
}

/**
 *用于删除一个节点(包括子节点)
 *@param array $data = array('id'=>主键,'root'=>名称) 二选一
 *@param int $update 默认为空,为1时逻辑删除
 */
function delete_tree_all($data,$update='') {
    $id   = $data['id'] ? intval($data['id']) : '';
    $root = $data['root'];
    if(!$id && !$root) return;

    $sql    =  $id ? "SELECT lft, rgt FROM tree WHERE id = '{$id}';" : "SELECT lft, rgt FROM tree WHERE name = '{$root}';";
    $result = mysql_query($sql);
    $row    = mysql_fetch_assoc($result);
    unset($sql);

    $middle = $row['rgt']-$row['lft']+1;
    if(!$update) {
        $sql    = "delete from tree where lft BETWEEN '" . $row['lft'] . "' AND '" . $row['rgt'] ."'";
        $sql1   = "update tree set rgt = rgt-{$middle} where rgt > {$row['rgt']}";
        $sql2   = "update tree set lft = lft-{$middle} where lft > {$row['rgt']}";
    } else {
        $sql    = "update tree set status = 1 where lft BETWEEN '" . $row['lft'] . "' AND '" . $row['rgt'] ."'";
        $sql1   = "update tree set rgt = rgt-{$middle} where status=0 and rgt > {$row['rgt']}";
        $sql2   = "update tree set lft = lft-{$middle} where status=0 and lft > {$row['rgt']}";
    }
    
    mysql_query($sql);
    mysql_query($sql1);
    mysql_query($sql2);
}

/**
 *用于删除一个节点(不包括子节点)
 *@param array $data = array('id'=>主键,'root'=>名称) 二选一
 *@param int $update 默认为空,为1时逻辑删除
 */
function delete_tree_item($data,$update='') {
    $id   = $data['id'] ? intval($data['id']) : '';
    $root = $data['root'];
    if(!$id && !$root) return;

    $sql    =  $id ? "SELECT id,lft, rgt FROM tree WHERE id = '{$id}';" : "SELECT id,lft, rgt FROM tree WHERE name = '{$root}';";
    $result = mysql_query($sql);
    $row    = mysql_fetch_assoc($result);
    unset($sql);

    if(!$update) {
        $sql  = "delete from tree where id = {$row['id']};";
        $sql1 = "update tree set rgt = rgt-1,lft = lft -1 where lft > {$row['lft']} and rgt < {$row['rgt']}";
        $sql2 = "update tree set lft = lft-2 where lft > {$row['rgt']}";
        $sql3 = "update tree set rgt = rgt-2 where rgt > {$row['rgt']}";
    } else {
        $sql  = "update tree set status = 1 where id = {$row['id']};";
        $sql1 = "update tree set rgt = rgt-1,lft = lft -1 where status = 0 and lft > {$row['lft']} and rgt < {$row['rgt']}";
        $sql2 = "update tree set lft = lft-2 where status = 0 and lft > {$row['rgt']}";
        $sql3 = "update tree set rgt = rgt-2 where status = 0 and rgt > {$row['rgt']}";
    }
    
    mysql_query($sql);
    mysql_query($sql1);
    //can do or not do just right,but not do load empty 2 number in middle
    mysql_query($sql2);
    mysql_query($sql3);
}

/**
 *用于获取所有的节点
 *@param array $data = array('id'=>主键,'root'=>名称) 二选一
 */
function get_tree_all($data) {
    $id   = $data['id'] ? intval($data['id']) : '';
    $root = $data['root'];
    if(!$id && !$root) return;

    $sql    =  $id ? "SELECT lft, rgt FROM tree WHERE id = '{$id}';" : "SELECT lft, rgt FROM tree WHERE name = '{$root}';";
    $result = mysql_query($sql);
    $row    = mysql_fetch_assoc($result);

    $adata  = array(); //所有数据
    $right  = array(); //计数
    $prev   = array();
    $result = mysql_query("SELECT id,name, lft, rgt FROM tree WHERE lft BETWEEN '" . $row['lft'] . "' AND '" . $row['rgt'] ."' ORDER BY lft ASC ;");
    while ($row = mysql_fetch_assoc($result)) {
        if (count($right) > 0) {
            while ($right[count($right) - 1] < $row['rgt']) { // 检查我们是否应该将节点移出堆栈
                array_pop($right);
                array_pop($prev);
            }
        }

        $parent  = $prev ? end($prev) : '';
        $adata[] = array('id'=>$row['id'],'name'=>$row['name'],'level'=>count($right),'parent'=>$parent);

        $right[] = $row['rgt'];
        $prev[]  = $row['name'];
    }
    return $adata;
}

/**
 *用于展示分类
 *@param array $data = array('id'=>主键,'root'=>名称) 二选一
 */
function display_tree($data) {
    $id   = $data['id'] ? intval($data['id']) : '';
    $root = $data['root'];
    if(!$id && !$root) return;

    $sql    =  $id ? "SELECT lft, rgt FROM tree WHERE id = '{$id}';" : "SELECT lft, rgt FROM tree WHERE name = '{$root}';";
    $result = mysql_query($sql);
    $row    = mysql_fetch_assoc($result);

    $right  = array();
    $result = mysql_query("SELECT name, lft, rgt FROM tree WHERE lft BETWEEN '" . $row['lft'] . "' AND '" . $row['rgt'] ."' ORDER BY lft ASC ;");
    while ($row = mysql_fetch_assoc($result)) {
        if (count($right) > 0) { // 检查我们是否应该将节点移出堆栈
            while ($right[count($right) - 1] < $row['rgt']) {
                array_pop($right);
            }
        }
        echo str_repeat('  ',count($right)) . $row['name'] . "\n";
        $right[] = $row['rgt'];
    }
}

mysql_connect('localhost','root','') or die('connect error');
mysql_select_db('test') or die('database error');
mysql_query('set names utf8');

display_tree(array('root'=>'Food'));
//display_tree(array('root'=>'bigboss'));

//move_tree_all($pdata=array('root'=>'Fruit'),$ndata=array('root'=>'Red'),$cdata=array('root'=>'Meat'));
//move_tree_all('','',$cdata=array('root'=>'Meat'));
//move_tree_item('','',array('root'=>'Red'));
//move_tree_item(array('root'=>'Red'),array('root'=>'Cherry'),array('root'=>'Fruit'));

//delete_tree_all(array('root'=>'Yellow'));
//delete_tree_all(array('root'=>'Meat'));
//delete_tree_item(array('root'=>'Meat'));

//insert_tree('','','bigboss');
//insert_tree(array('root'=>'Red'),'','dalao');
//insert_tree(array('root'=>'Red'),array('root'=>'Cherry'),'baddalao');
//insert_tree(array('root'=>'Fruit'),array('root'=>'Red'),'Redbother');

display_tree(array('root'=>'Food'));

 

0
3
分享到:
评论

相关推荐

    无限级分类/多级分类【左右值方式实现】

    左右值法(Left-Right Value)是实现无限级分类的一种高效策略,它通过为每个节点分配两个数值(左值和右值)来表示节点在整个树中的位置。 首先,我们需要理解基本概念。在左右值法中,每个分类都有一个左值和一个...

    php+mysql实现无限级分类

    在实现一个PHP项目时,如果需要使用分类功能,并且分类的层级不确定,可以考虑使用无限级分类的方法。这种方法允许系统自适应不同层级的分类需求,方便对数据进行组织和管理。本文将详细介绍如何使用PHP结合MySQL...

    解析thinkphp的左右值无限分类

    综上所述,ThinkPHP 的左右值无限分类提供了一种高效、灵活的方式来管理大量的分类数据,其核心在于通过 `lft` 和 `rgt` 字段实现对树结构的快速查询和操作。了解并熟练掌握这种分类方法,对于优化网站的性能和用户...

    解析左右值无限分类的实现算法

    在介绍PHP实现左右值无限分类算法之前,我们需要了解为什么需要这样的算法。在很多Web应用中,比如产品分类、论坛、邮件列表等,我们经常会遇到需要存储和展示树状结构数据的场景。关系型数据库如MySQL是PHP后端开发...

    PHP函数库,PHP函数大全,PHP函数实例,PHP函数手册,PHP5函数库实例

    PHP无限分类[左右值]算法 PHP显示日期、周几、农历初几、什么节日函数 PHP格式化数据,防止注入函数 PHP模拟登陆 PHP生成唯一标识符函数 PHP生成曲线图函数 PHP生成条形码 PHP统计字符串里单词出现次数 PHP...

    php通过前序遍历树实现无需递归的无限极分类

    这里的`lft`和`rgt`字段是用于存储树结构的左右值,它们是实现无限级分类的关键。左右值法(也称为Materialized Path)是一种有效的方法,可以快速地进行分类操作,比如查找子节点或同级节点。 在前序遍历中,我们...

    基于layui实现树形穿梭框

    "基于layui实现树形穿梭框"是layui框架中的一个组件,用于构建交互式的树状结构选择器,常用于权限管理、数据分类选择等场景。下面将详细介绍这个知识点。 1. layui框架基础: layui是一个轻量级的前端框架,包含...

    Ajax 四级导航菜单ASP+Access动态版

    文字从左边移动到右边,JS循环控制 JavaScript使用indexOf搜索字符串并返回位置 Javascript文字左右反弹的效果代码 CSS最简单的阴影文字特效 JavaScript隐藏显示文字 JavaScript控制字符大小写转换 JS逐字变化文字...

Global site tag (gtag.js) - Google Analytics