`

【理论】 MYSQL大数据处理,分布式数据库的应用

阅读更多

在Web 2.0时代,网站将会经常面临着快速增加的访问量,但是我们的应用如何满足用户的访问需求,而且基本上我们看到的情况都是性能瓶颈都是在数据库上,这个不怪数据库,毕竟要满足很大访问量确实对于任何一款数据库都是很大的压力,不论是商业数据库Oracle、MS sql Server、DB2之类,还是开源的MySQL、PostgreSQL,都是很大的挑战,解决的方法很简单,就是把数据分散在不同的数据库上(可以是硬 件上的,也可以是逻辑上的),本文就是主要讨论如何数据库分散存储的的问题。

 

目前主要分布存储的方式都是按照一定的方式进行切分,主要是垂直切分(纵向)和水平切分(横向)两种方式,当然,也有两种结合的方式,达到更贴切的切分粒度。

1. 垂直切分(纵向)数据是数据库切分按照网站业务、产品进行切分,比如用户数据、博客文章数据、照片数据、标签数据、群组数据等等每个业务一个独立的数据库或者数据库服务器。

2. 水平切分(横向)数据是把所有数据当作一个大产品,但是把所有的平面数据按照某些Key(比如用户名)分散在不同数据库或者数据库服务器上,分散对数据访问的压力,这种方式也是本文主要要探讨的。

本文主要针对的的 MySQL/PostgreSQL 类的开源数据库,同时平台是在 linux/FreeBSD,使用 php/Perl/Ruby/Python 等脚本语言,搭配 Apache/Lighttpd 等Web服务器 的平台下面的Web应用,不讨论静态文件的存储,比如视频、图片、CSS、JS,那是另外一个话题。

说明:下面将会反复提到的一个名次“节点”(Node),指的是一个数据库节点,可能是物理的一台数据库服务器,也可能是一个数据库,一般情况是指一台数据库服务器,并且是具有 Master/Slave 结构的数据库服务器,我们查看一下图片,了解这样节点的架构:

一、基于散列的分布方式

1. 散列方式介绍

基于散列(Hash)的分布存储方式,主要是依赖主要Key和散列算法,比如以用户为主的应用主要的角色就是用户,那么做Key的就可以是用户ID或者是用 户名、邮件地址之类(该值必须在站点中随处传递),使用这个唯一值作为Key,通过对这个Key进行散列算法,把不同的用户数据分散在不同的数据库节点 (Node)上。

我们通过简单的实例来描述这个问题:比如有一个应用,Key是用户ID,拥有10个数据库节点,最简单的散列算法是我们 用户ID数模以我们所有节点数,余数就是对应的节点机器,算法:所在节点 = 用户ID % 总节点数,那么,用户ID为125的用户所在节点:125 % 10 = 5,那么应该在名字为5的节点上。同样的,可以构造更为强大合理的Hash算法来更均匀的分配用户到不同的节点上。

2. 散列分布存储方式的扩容

我们知道既然定义了一个散列算法,那么这些Key就会按部就班的分散到指定节点上,但是如果目前的所有节点不够满足要求怎么办?这就存在一个扩容的问题,扩容首当其冲的就是要修改散列算法,同时数据也要根据散列算法进修迁移或者修改。

(1) 迁移方式扩容:修 改散列算法以后,比如之前是10个节点,现在增加到20个节点,那么Hash算法就是[模20],相应的存在一个以前的节点被分配的数据会比较多,但是新 加入的节点数据少的不平衡的状态,那么可以考虑使用把以前数据中的数据按照Key使用新的Hash算法进行运算出新节点,把数据迁移到新节点,缺点但是这 个成本相应比较大,不稳定性增加;好处是数据比较均匀,并且能够充分利用新旧节点。

(2) 充分利用新节点:增 加新节点以后,Hash算法把新加入的数据全部Hash到新节点上,不再往旧节点上分配数据,这样不存在迁移数据的成本。优点是只需要修改Hash算法, 无须迁移数据就能够简单的增加节点,但是在查询数据的时候,必须使用考虑到旧Key使用旧Hash算法,新增加的Key使用新的Hash算法,不然无法查 找到数据所在节点。缺点很明显,一个是Hash算法复杂度增加,如果频繁的增加新节点,算法将非常复杂,无法维护,另外一个方面是旧节点无法充分利用资源 了,因为旧节点只是单纯的保留旧Key数据,当然了,这个也有合适的解决方案。

总结来说,散列方式分布数据,要新增节点比较困难和繁琐,但是也有很多适合的场合,特别适合能够预计到未来数据量大小的应用,但是普遍 Web2.0 网站都无法预计到数据量。

二、基于全局节点分配方式

1. 全局节点分配方式介绍

就是把所有Key信息与数据库节点之间的映射关系记录下来,保存到全局表中,当需要访问某个节点的时候,首先去全局表中查找,找到以后再定位到相应节点。全局表的存储方式一般两种:

(1) 采用节点数据库本身(MySQL/PostgreSQL)存储节点信息,能够远程访问,为了保证性能,同时配合使用 Heap(MEMORY) 内存表,或者是使用 Memcached 缓存方式来缓存,加速节点查找

(2) 采用 BDB(BerkeleyDB)、DBM/GDBM/NDBM 这类本地文件数据库,基于 key=>value 哈希数据库,查找性能比较高,同时结合 APC、Memcached 之类的缓存加速。

第 一种存储方式是容易查询(包括远程查询),缺点是性能不太好(这个是所有关系型数据库的通病);第二种方式的有点是本地查询速度很快(特别是hash型数 据库,时间复杂度是O(1),比较快),缺点是无法远程使用,并且无法在多台机器中间同步共享数据,存在数据一致的情况。

我们来描述实施 大概结构:假如我们有10个数据库节点,一个全局数据库用于存储Key到节点的映射信息,假设全局数据库有一个表叫做 AllNode ,包含两个字段,Key 和 NodeID,假设我们继续按照上面的案例,用户ID是Key,并且有一个用户ID为125的用户,它对应的节点,我们查询表获得:

Key NodeID
13 2
148 5
22 9
125 6

可以确认这个用户ID为125的用户,所在的节点是6,那么就可以迅速定位到该节点,进行数据的处理。

 

2. 全局节点分布方式的扩容

全局节点分配方式同样存在扩容的问题,不过它早就考虑到这个问题,并且这么设计就是为了便于扩容,主要的扩容方式是两种:

(1) 通过节点自然增加来分配Key到节点的映射扩容

这 种是最典型、最简单、最节约机器资源的扩容方式,大致就是按照每个节点分配指定的数据量,比如一个节点存储10万用户数据,第一个节点存储0-10w用户 数据,第二个节点存储10w-20w用户数据,第三个节点存储20w-30w用户信息,依此类推,用户增加到一定数据量就增加节点服务器,同时把Key分 配到新增加的节点上,映射关系记录到全局表中,这样可以无限的增加节点。存在的问题是,如果早期的节点用户访问频率比较低,而后期增加的节点用户访问频率 比较高,则存在节点服务器负载不均衡的现象,这个也是可以想方案解决的。

(2) 通过概率算法来映射Key到节点的的扩容

这种方式是在既然有的节点基础上,给每个节点设定一个被分配到Key的概率,然后分配Key的时候,按照每个节点被指定的概率进行分配,如果每个节点平均的数据容量超过了指定的百分比,比如50%,那么这时候就考虑增加新节点,那么新节点增加Key的概率要大于旧节点。

一般情况下,对于节点的被分配的概率也是记录在数据库中的,比如我们把所有的概率为100,共有10个节点,那么设定每个节点被分配的数据的概率为10,我们查看数据表结构:

NodeID Weight
1 10
2 10
3 10

现在新加入了一个 节点,新加入的节点,被分配Key的几率要大于旧节点,那么就必须对这个新加入的节点进行概率计算,计算公式:10х+у=100, у>х,得出:у{10…90},х{1…9},x是单个旧节点的概率,旧节点的每个节点的概率是一样的,y是新节点的概率,按照这个计算 公式,推算出新节点y的概率的范围,具体按照具体不同应用的概率公式进行计算。

三、存在的问题

现在我们来分析和解决一下我们上面两种分布存储方式的存在的问题,便于在实际考虑架构的时候能够避免或者是融合一些问题和缺点。

1. 散列和全局分配方式都存在问题

(1) 散列方式扩容不是很方便,必须修改散列算法,同时可能还需要对数据进行迁移,它的优点是从Key定位一个节点非常快,O(1)的时间复杂度,而且基本不需要查询数据库,节约响应时间。

(2) 全局分配方式存在的问题最明显的是单点故障,全局数据库down掉将影响所有应用。另外一个问题是查询量大,对每个Key节点的操作都必须经过全局数据库,压力很大,优点是扩容方便,增加节点简单。

2. 分布存储带来的搜索和统计问题

(1) 一般搜索或统计都是对所有数据进行处理,但因为拆分以后,数据分散在不同节点机器上,无法进行全局查找和统计。解决方案一是对主要的基础数据存储在全局表中,便于查找和统计,但这类数据不宜太多,部分核心数据。

(2) 采用站内搜索引擎来索引和记录全部数据,比如采用 Lucene 等开源索引系统进行所有数据的索引,便于搜索。 对于统计操作可以采用后台非实时统计,可采用遍历所有节点的方式,但效率低下。

3. 性能优化问题

(1) 散列算法,节点概率和分配等为了提高性能都可以使用编译语言开发,做成lib或者是所有php扩展形式。

(2) 对于采用 MySQL 的情况,可以采用自定义的数据库连接池,采用 Apache Module 形式加载,能够自由定制的采用各种连接方式。

(3) 对于全局数据或都频繁访问的数据,可以采用APC、Memcache、DBM、BDB、共享内存、文件系统等各种方式进行缓存,减少数据库的访问压力。

(4) 采用数据本身的强大处理机制,比如 MySQL5 的表分区或者是 MySQL5 的Cluster 。另外建议在实际架构中采用InnoDB表引擎作为主要存储引擎,MyISAM作为一些日志、统计数据等场合,不论在安全、可靠性、速度都有保障。

分享到:
评论

相关推荐

    新浪:基于MySQL的分布式数据库实践1

    "新浪基于MySQL的分布式数据库实践1" 分布式数据库实践是指在...新浪基于MySQL的分布式数据库实践是一种高性能、可扩展的数据库系统,使用了Sharding策略、Cache应用、NoSQL应用等技术来提高数据库的性能和可扩展性。

    MYSQL 百度分布式数据库

    综上所述,“百度分布式数据库”是针对大规模互联网应用而设计的数据库解决方案,它结合了MySQL的灵活性和分布式架构的优势,实现了高并发、高可用和高性能的目标。通过主从复制、分片、分布式事务处理等多种技术...

    工行分布式数据库应用实践.pptx

    工行分布式数据库应用实践的技术路线分析和选择可以分为两个步骤:第一步是近期策略,建设分布式数据库访问层+MySQL的解决方案,支撑行内数据库转型实施;第二步是中远期策略,持续跟踪和研究国内分布式事务数据库...

    分布式数据库架构及企业实践 基于Mycat中间件.pdf

    综上所述,分布式数据库架构及企业实践基于Mycat中间件,涉及到的内容广泛,包括数据库架构设计、中间件选型、数据分片策略、事务管理、性能优化等多个方面,对于理解和实施大规模分布式数据库系统具有重要的指导...

    基于Mycat中间件分布式数据库架构及企业实践

    总结,Mycat作为分布式数据库中间件,为企业提供了强大的数据处理能力和高度的可扩展性,是应对大数据时代的关键工具。在实际应用中,我们需要深入了解其原理,结合具体业务场景,合理配置和使用,才能充分发挥其...

    MySQL分布式数据库中间件Mycat性能调优指南

    MySQL分布式数据库中间件Mycat是一款广泛应用于大数据处理和高并发场景的重要工具,它通过将数据分布到多个物理节点上,实现了数据的水平扩展。在实际应用中,Mycat的性能调优对于系统的整体效率至关重要。本指南将...

    第17章分布式数据库与MySQL的运维.docx

    总的来说,分布式数据库和MySQL的运维涉及到了数据分布、透明性、切分策略、复制技术以及高可用集群等多个方面,这些都是构建大规模、高可用数据库系统的关键技术。理解并掌握这些知识点,有助于设计和维护高效、...

    分布式数据库系统

    可能包括新型的数据存储模型(如NoSQL和NewSQL)、云计算对分布式数据库的影响、大数据处理技术(如Hadoop和Spark)与分布式数据库的融合,以及区块链技术在分布式数据库领域的应用。 总之,这个资料包为学习分布式...

    分布式数据库选型方案.docx

    这类数据库通过分布式一致性算法实现了数据的多副本存储,并支持标准SQL,显著提升了数据处理能力。 - **技术分类**: - **分布式中间件**:采用存储与计算分离的架构,底层使用传统的单机数据库,通过主从复制机制...

    MySQL的分布式数据库访问法.pdf

    这种方式虽然不能完全替代分布式数据库系统的功能,但对于需要在多个MySQL实例间共享数据的应用来说,是一种实用的解决方案。 3. **技术实现**: 作者提供了一个方法,即通过PHP脚本连接到不同的MySQL服务器,然后...

    阿里分布式数据库服务原理与实践

    分布式数据库服务是现代大型互联网应用的关键技术之一,尤其在阿里巴巴这样的企业中,面对海量数据的存储和处理,传统的单体数据库已经无法满足需求。本文将深入探讨“阿里分布式数据库服务原理与实践”,揭示阿里云...

    基于MySQL分布式数据库系统同步分析与实现.pdf

    本文将深入探讨基于MySQL的分布式数据库系统中的数据同步技术,以及其实现方法。 在分布式数据库系统中,数据同步通常涉及到两个或多个数据库实例之间的数据复制。这在处理大量并发用户、地理位置分散的系统,或者...

    一种Shared-Nothing分布式数据库的构建方法.pdf

    文章通过具体的技术实现和性能测试,展示了Shared-Nothing架构和列存储机制相结合的分布式数据库系统不仅具有良好的查询性能和扩展性,而且能够以较低的成本满足海量数据处理的需求,这对于当前大数据分析及应用具有...

    分布式数据库架构设计.pptx

    分布式数据库架构设计 分布式数据库架构设计是指...SequoiaDB 的分布式数据库架构设计提供了计算 - 存储分离、事务和一致性、高可靠性、自主可控与数据安全等多方面的解决方案,满足了大规模数据存储和高性能的需求。

    基于MySQL的分布式数据库实践

    本文主要探讨了基于MySQL的分布式数据库实践方法,旨在为大型互联网应用提供一种可行的技术方案。 #### 二、关键技术点分析 ##### 1. Sharding策略 **概念定义:** 数据库分片(Sharding)是一种通过将数据分布到...

    利用C#实现分布式数据库查询

    总结,通过C#和ADO.Net,我们可以有效地处理分布式数据库查询,实现跨数据库操作,同时通过适当的优化策略,确保系统性能和数据一致性。在实际项目中,还需要考虑并发控制、安全性以及数据库设计等多个方面,以构建...

    工行分布式数据库应用实践.pdf

    工商银行的分布式数据库应用实践主要围绕技术创新,以适应银行业务的高并发、弹性扩展以及海量数据处理的需求。在这一过程中,工商银行选择了逐步转型的策略,旨在实现核心银行系统的开放平台化,同时确保系统的高...

    分布式数据库在湖南电信IT架构转型中的探索和应用.pdf

    在湖南电信的实践中,Mycat被用来协调MySQL数据库,实现高并发和大规模数据处理。 3. 分布式数据库的优势 - **扩展性**:通过动态增加或减少数据库节点,实现系统的线性扩展,适应业务规模的变化。 - **高可用性*...

    银行核心系统分布式数据库解决方案.pdf

    综上所述,分布式数据库技术的突破性进展,不仅实现了海量数据场景下的高性能、可扩展性需求,还满足了支持交易型数据库必须的分布式事务、数据强一致性、高性能等特性。分布式数据库以其分布式架构、高可用性、易...

    基于MySQL的分布式SQL数据库的设计策略研究.pdf

    分布式数据库是指由多个物理分布的数据库实例组成的数据库系统,它能提供比单个数据库更强大的数据处理能力、更高的可用性和更好的扩展性。随着互联网技术的广泛应用,传统数据库已经无法满足大规模数据存储和处理的...

Global site tag (gtag.js) - Google Analytics