转文章
双重检查锁定与延迟初始化
双重检查锁定的由来
在java程序中,有时候可能需要推迟一些高开销的对象初始化操作,并且只有在使用这些对象时才进行初始化。此时程序员可能会采用延迟初始化。但要正确实现线程安全的延迟初始化需要一些技巧,否则很容易出现问题。比如,下面是非线程安全的延迟初始化对象的示例代码:
public class UnsafeLazyInitialization { private static Instance instance; public static Instance getInstance() { if (instance == null) //1:A线程执行 instance = new Instance(); //2:B线程执行 return instance; } }
在UnsafeLazyInitialization中,假设A线程执行代码1的同时,B线程执行代码2。此时,线程A可能会看到instance引用的对象还没有完成初始化(出现这种情况的原因见后文的“问题的根源”)。
对于UnsafeLazyInitialization,我们可以对getInstance()做同步处理来实现线程安全的延迟初始化。示例代码如下:
迟初始化。示例代码如下:
public class SafeLazyInitialization { private static Instance instance; public synchronized static Instance getInstance() { if (instance == null) instance = new Instance(); return instance; } }
由于对getInstance()做了同步处理,synchronized将导致性能开销。如果getInstance()被多个线程频繁的调用,将会导致程序执行性能的下降。反之,如果getInstance()不会被多个线程频繁的调用,那么这个延迟初始化方案将能提供令人满意的性能。
在早期的JVM中,synchronized(甚至是无竞争的synchronized)存在这巨大的性能开销。因此,人们想出了一个“聪明”的技巧:双重检查锁定(double-checked locking)。人们想通过双重检查锁定来降低同步的开销。下面是使用双重检查锁定来实现延迟初始化的示例代码:
public class DoubleCheckedLocking { //1 private static Instance instance; //2 public static Instance getInstance() { //3 if (instance == null) { //4:第一次检查 synchronized (DoubleCheckedLocking.class) { //5:加锁 if (instance == null) //6:第二次检查 instance = new Instance(); //7:问题的根源出在这里 } //8 } //9 return instance; //10 } //11 } //12
如上面代码所示,如果第一次检查instance不为null,那么就不需要执行下面的加锁和初始化操作。因此可以大幅降低synchronized带来的性能开销。上面代码表面上看起来,似乎两全其美:
- 在多个线程试图在同一时间创建对象时,会通过加锁来保证只有一个线程能创建对象。
- 在对象创建好之后,执行getInstance()将不需要获取锁,直接返回已创建好的对象。
双重检查锁定看起来似乎很完美,但这是一个错误的优化!在线程执行到第4行代码读取到instance不为null时,instance引用的对象有可能还没有完成初始化。
问题的根源
前面的双重检查锁定示例代码的第7行(instance = new Singleton();)创建一个对象。这一行代码可以分解为如下的三行伪代码:
memory = allocate(); //1:分配对象的内存空间 ctorInstance(memory); //2:初始化对象 instance = memory; //3:设置instance指向刚分配的内存地址
上面三行伪代码中的2和3之间,可能会被重排序(在一些JIT编译器上,这种重排序是真实发生的,详情见参考文献1的“Out-of-order writes”部分)。2和3之间重排序之后的执行时序如下:
memory = allocate(); //1:分配对象的内存空间 instance = memory; //3:设置instance指向刚分配的内存地址 //注意,此时对象还没有被初始化! ctorInstance(memory); //2:初始化对象
根据《The Java Language Specification, Java SE 7 Edition》(后文简称为java语言规范),所有线程在执行java程序时必须要遵守intra-thread semantics。intra-thread semantics保证重排序不会改变单线程内的程序执行结果。换句话来说,intra-thread semantics允许那些在单线程内,不会改变单线程程序执行结果的重排序。上面三行伪代码的2和3之间虽然被重排序了,但这个重排序并不会违反intra-thread semantics。这个重排序在没有改变单线程程序的执行结果的前提下,可以提高程序的执行性能。
为了更好的理解intra-thread semantics,请看下面的示意图(假设一个线程A在构造对象后,立即访问这个对象):
如上图所示,只要保证2排在4的前面,即使2和3之间重排序了,也不会违反intra-thread semantics。
下面,再让我们看看多线程并发执行的时候的情况。请看下面的示意图:
由于单线程内要遵守intra-thread semantics,从而能保证A线程的程序执行结果不会被改变。但是当线程A和B按上图的时序执行时,B线程将看到一个还没有被初始化的对象。
※注:本文统一用红色的虚箭线标识错误的读操作,用绿色的虚箭线标识正确的读操作。
回到本文的主题,DoubleCheckedLocking示例代码的第7行(instance = new Singleton();)如果发生重排序,另一个并发执行的线程B就有可能在第4行判断instance不为null。线程B接下来将访问instance所引用的对象,但此时这个对象可能还没有被A线程初始化!下面是这个场景的具体执行时序:
时间 | 线程A | 线程B |
t1 | A1:分配对象的内存空间 | |
t2 | A3:设置instance指向内存空间 | |
t3 | B1:判断instance是否为空 | |
t4 | B2:由于instance不为null,线程B将访问instance引用的对象 | |
t5 | A2:初始化对象 | |
t6 | A4:访问instance引用的对象 |
这里A2和A3虽然重排序了,但java内存模型的intra-thread semantics将确保A2一定会排在A4前面执行。因此线程A的intra-thread semantics没有改变。但A2和A3的重排序,将导致线程B在B1处判断出instance不为空,线程B接下来将访问instance引用的对象。此时,线程B将会访问到一个还未初始化的对象。
在知晓了问题发生的根源之后,我们可以想出两个办法来实现线程安全的延迟初始化:
- 不允许2和3重排序;
- 允许2和3重排序,但不允许其他线程“看到”这个重排序。
后文介绍的两个解决方案,分别对应于上面这两点。
基于volatile的双重检查锁定的解决方案
对于前面的基于双重检查锁定来实现延迟初始化的方案(指DoubleCheckedLocking示例代码),我们只需要做一点小的修改(把instance声明为volatile型),就可以实现线程安全的延迟初始化。请看下面的示例代码:
public class SafeDoubleCheckedLocking { private volatile static Instance instance; public static Instance getInstance() { if (instance == null) { synchronized (SafeDoubleCheckedLocking.class) { if (instance == null) instance = new Instance();//instance为volatile,现在没问题了 } } return instance; } }
注意,这个解决方案需要JDK5或更高版本(因为从JDK5开始使用新的JSR-133内存模型规范,这个规范增强了volatile的语义)。
当声明对象的引用为volatile后,“问题的根源”的三行伪代码中的2和3之间的重排序,在多线程环境中将会被禁止。上面示例代码将按如下的时序执行:
这个方案本质上是通过禁止上图中的2和3之间的重排序,来保证线程安全的延迟初始化。
基于类初始化的解决方案
JVM在类的初始化阶段(即在Class被加载后,且被线程使用之前),会执行类的初始化。在执行类的初始化期间,JVM会去获取一个锁。这个锁可以同步多个线程对同一个类的初始化。
基于这个特性,可以实现另一种线程安全的延迟初始化方案(这个方案被称之为Initialization On Demand Holder idiom):
public class InstanceFactory { private static class InstanceHolder { public static Instance instance = new Instance(); } public static Instance getInstance() { return InstanceHolder.instance ; //这里将导致InstanceHolder类被初始化 } }
假设两个线程并发执行getInstance(),下面是执行的示意图:
这个方案的实质是:允许“问题的根源”的三行伪代码中的2和3重排序,但不允许非构造线程(这里指线程B)“看到”这个重排序。
初始化一个类,包括执行这个类的静态初始化和初始化在这个类中声明的静态字段。根据java语言规范,在首次发生下列任意一种情况时,一个类或接口类型T将被立即初始化:
- T是一个类,而且一个T类型的实例被创建;
- T是一个类,且T中声明的一个静态方法被调用;
- T中声明的一个静态字段被赋值;
- T中声明的一个静态字段被使用,而且这个字段不是一个常量字段;
- T是一个顶级类(top level class,见java语言规范的§7.6),而且一个断言语句嵌套在T内部被执行。
在InstanceFactory示例代码中,首次执行getInstance()的线程将导致InstanceHolder类被初始化(符合情况4)。
由于java语言是多线程的,多个线程可能在同一时间尝试去初始化同一个类或接口(比如这里多个线程可能在同一时刻调用getInstance()来初始化InstanceHolder类)。因此在java中初始化一个类或者接口时,需要做细致的同步处理。
Java语言规范规定,对于每一个类或接口C,都有一个唯一的初始化锁LC与之对应。从C到LC的映射,由JVM的具体实现去自由实现。JVM在类初始化期间会获取这个初始化锁,并且每个线程至少获取一次锁来确保这个类已经被初始化过了(事实上,java语言规范允许JVM的具体实现在这里做一些优化,见后文的说明)。
对于类或接口的初始化,java语言规范制定了精巧而复杂的类初始化处理过程。java初始化一个类或接口的处理过程如下(这里对类初始化处理过程的说明,省略了与本文无关的部分;同时为了更好的说明类初始化过程中的同步处理机制,笔者人为的把类初始化的处理过程分为了五个阶段):
第一阶段:通过在Class对象上同步(即获取Class对象的初始化锁),来控制类或接口的初始化。这个获取锁的线程会一直等待,直到当前线程能够获取到这个初始化锁。
假设Class对象当前还没有被初始化(初始化状态state此时被标记为state = noInitialization),且有两个线程A和B试图同时初始化这个Class对象。下面是对应的示意图:
下面是这个示意图的说明:
时间 | 线程A | 线程B |
t1 | A1:尝试获取Class对象的初始化锁。这里假设线程A获取到了初始化锁 | B1:尝试获取Class对象的初始化锁,由于线程A获取到了锁,线程B将一直等待获取初始化锁 |
t2 | A2:线程A看到线程还未被初始化(因为读取到state == noInitialization),线程设置state = initializing | |
t3 | A3:线程A释放初始化锁 |
第二阶段:线程A执行类的初始化,同时线程B在初始化锁对应的condition上等待:
下面是这个示意图的说明:
时间 | 线程A | 线程B |
t1 | A1:执行类的静态初始化和初始化类中声明的静态字段 | B1:获取到初始化锁 |
t2 | B2:读取到state == initializing | |
t3 | B3:释放初始化锁 | |
t4 | B4:在初始化锁的condition中等待 |
第三阶段:线程A设置state = initialized,然后唤醒在condition中等待的所有线程:
下面是这个示意图的说明:
时间 | 线程A |
t1 | A1:获取初始化锁 |
t2 | A2:设置state = initialized |
t3 | A3:唤醒在condition中等待的所有线程 |
t4 | A4:释放初始化锁 |
t5 | A5:线程A的初始化处理过程完成 |
第四阶段:线程B结束类的初始化处理:
下面是这个示意图的说明:
时间 | 线程B |
t1 | B1:获取初始化锁 |
t2 | B2:读取到state == initialized |
t3 | B3:释放初始化锁 |
t4 | B4:线程B的类初始化处理过程完成 |
线程A在第二阶段的A1执行类的初始化,并在第三阶段的A4释放初始化锁;线程B在第四阶段的B1获取同一个初始化锁,并在第四阶段的B4之后才开始访问这个类。根据java内存模型规范的锁规则,这里将存在如下的happens-before关系:
这个happens-before关系将保证:线程A执行类的初始化时的写入操作(执行类的静态初始化和初始化类中声明的静态字段),线程B一定能看到。
第五阶段:线程C执行类的初始化的处理:
下面是这个示意图的说明:
时间 | 线程B |
t1 | C1:获取初始化锁 |
t2 | C2:读取到state == initialized |
t3 | C3:释放初始化锁 |
t4 | C4:线程C的类初始化处理过程完成 |
在第三阶段之后,类已经完成了初始化。因此线程C在第五阶段的类初始化处理过程相对简单一些(前面的线程A和B的类初始化处理过程都经历了两次锁获取-锁释放,而线程C的类初始化处理只需要经历一次锁获取-锁释放)。
线程A在第二阶段的A1执行类的初始化,并在第三阶段的A4释放锁;线程C在第五阶段的C1获取同一个锁,并在在第五阶段的C4之后才开始访问这个类。根据java内存模型规范的锁规则,这里将存在如下的happens-before关系:
这个happens-before关系将保证:线程A执行类的初始化时的写入操作,线程C一定能看到。
※注1:这里的condition和state标记是本文虚构出来的。Java语言规范并没有硬性规定一定要使用condition和state标记。JVM的具体实现只要实现类似功能即可。
※注2:Java语言规范允许Java的具体实现,优化类的初始化处理过程(对这里的第五阶段做优化),具体细节参见java语言规范的12.4.2章。
通过对比基于volatile的双重检查锁定的方案和基于类初始化的方案,我们会发现基于类初始化的方案的实现代码更简洁。但基于volatile的双重检查锁定的方案有一个额外的优势:除了可以对静态字段实现延迟初始化外,还可以对实例字段实现延迟初始化。
总结
延迟初始化降低了初始化类或创建实例的开销,但增加了访问被延迟初始化的字段的开销。在大多数时候,正常的初始化要优于延迟初始化。如果确实需要对实例字段使用线程安全的延迟初始化,请使用上面介绍的基于volatile的延迟初始化的方案;如果确实需要对静态字段使用线程安全的延迟初始化,请使用上面介绍的基于类初始化的方案。
相关推荐
在Java 5及更高版本中,这种问题已经通过改进的内存模型得到解决,双重检查锁定现在是线程安全且高效的延迟初始化实现方式。 总结来说,Java多线程环境下的延迟初始化需要考虑线程安全和性能优化。双重检查锁定通过...
基于 volatile 的双重检查锁定可以对静态字段和实例字段实现延迟初始化,而基于类初始化的双重检查锁定只能对静态字段实现延迟初始化。 在实际应用中,需要根据具体情况选择合适的双重检查锁定方案。如果需要对实例...
3. **静态内部类(线程安全,延迟初始化)** 静态内部类的实现方式既保证了线程安全,又延迟了单例的初始化。当类加载时,静态内部类不会被加载,因此单例只有在调用`getInstance()`时才会被创建。 ```java ...
Java 单例模式是一种设计模式,它用于保证一个类只有一个实例,并提供全局访问点...在 Java 5 之后,推荐使用双重检查锁定或静态内部类的方式,它们既能保证线程安全,又能实现延迟初始化,且避免了不必要的同步开销。
通过理解并应用双重检查锁定、volatile、延迟初始化以及其他的并发控制策略,开发者可以构建出更加健壮的并发应用程序。在实际项目中,根据需求和性能考虑,可以选择合适的DCL实现方式,以保证代码的稳定性和性能。
本文介绍了Java中单例模式的几种实现方式,包括非线程安全的基本实现、通过`synchronized`关键字实现线程安全、双重检查锁定以及使用静态内部类实现的延迟初始化持有类。每种方式都有其特点和适用场景: - **非线程...
3. 双重检查锁定(DCL,线程安全且延迟初始化): ```cpp class Printer { private: static Printer* instance; Printer() {} mutable std::mutex mtx; public: static Printer* getInstance() { if (instance ...
#### 方案四:延迟初始化(懒汉模式)与双重检查锁定 ```cpp class qmmanager { private: static qmmanager* instance_; qmmanager(); ~qmmanager() {}; static inline qmmanager* getInstance() { if ...
3. **双重检查锁定(DCL)**:结合了延迟初始化和线程安全性。 ```java public class Singleton { private volatile static Singleton instance; private Singleton() {} public static Singleton ...
3. **双重检查锁定(DCL,Double Check Locking)**:结合了懒汉式的延迟初始化和饿汉式的线程安全性。在多线程环境中,这种方法既能保证线程安全,又能延迟初始化。 ```java public class Singleton { private ...
懒汉模式的特点是延迟初始化,即在第一次需要实例时才进行创建。这样做的好处是可以避免在不需要单例时就进行不必要的初始化,节省资源。然而,如果在多线程环境下,不加控制的懒汉模式可能会导致多个实例的产生。...
为了解决线程安全与性能问题,可以使用双重检查锁定。这种方式在类加载时并不创建实例,只有在第一次调用`getInstance()`时才进行实例化,降低了同步的范围。 ```java public class Singleton { private volatile ...
3. **双重检查锁定(DCL)**:这种方式既实现了延迟初始化,又保证了线程安全,通过synchronized关键字来保证多线程环境下的正确性。 ```java public class Singleton { private volatile static Singleton ...
4. **静态内部类**:通过将单例的实例化过程封装在一个静态内部类中,可以确保类加载时不会立即实例化单例,同时由于静态内部类只会被加载一次,所以也能保证单例的唯一性,这种方法线程安全且延迟初始化。...
懒汉模式通过延迟初始化来节省资源,但需要处理线程安全问题;饿汉模式则在类加载时就初始化,保证线程安全但可能造成资源浪费。在实际开发中,应根据具体需求选择适合的实现方式,平衡性能和资源使用。对于Java...
这种实现方式延迟初始化,只有在第一次调用`getInstance()`时才创建实例。但其在多线程环境下不安全,可能出现多个线程同时创建`Singleton`实例的情况。 2. **懒汉式(线程安全,同步方法)**: 通过在`...
DCL式单例结合了饿汉式和懒汉式的优点,既延迟初始化又保证了线程安全。关键在于两次检查`INSTANCE`是否为`null`,并在创建实例时使用`synchronized`关键字,避免了不必要的同步开销。代码如下: ```java public...
如果需要延迟初始化,可以采用双重检查锁定或静态内部类方式;对于简单的单例,枚举方式也是不错的选择。总的来说,理解并正确运用单例模式,可以有效提高代码的复用性和可维护性,但也要注意避免滥用,以免带来不必...
3. **双重检查锁定(DCL)**:结合了懒汉式的延迟初始化和饿汉式的线程安全性。示例代码: ```java public class Singleton { private volatile static Singleton instance; private Singleton() {} public...
如果希望延迟初始化且考虑线程安全,可以选择双重检查锁定或静态内部类;如果希望防止单例被恶意反射创建,枚举单例是最佳选择。 在使用单例模式时,需要注意以下几点: 1. 避免过早初始化:懒汉式可以延迟初始化,...