`
Kevin12
  • 浏览: 236064 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

Hive1.2.1安装和使用(基于Hadoop2.6.0)

    博客分类:
  • Hive
阅读更多
安装hive,这里使用mysql作为hive的metastore;
Ubuntu 15.10虚拟机中安装mysql方法请看:http://kevin12.iteye.com/admin/blogs/2280771

Hadoop2.6.0集群安装:http://kevin12.iteye.com/blog/2273532

1.查看spark 1.6.0版本支持hive的版本从0.12.0~1.2.1,这里选择hive的1.2.1版本。


2.去官网下载apache-hive-1.2.1-bin.tar.gz,官网地址:http://hive.apache.org/downloads.html
拷贝到master1虚拟机中的,执行命令解压到当前目录中,然后再移到/usr/local/hive目录中。
root@master1:/usr/local/tools# tar -zxvf apache-hive-1.2.1-bin.tar.gz 
root@master1:/usr/local/tools# mv apache-hive-1.2.1-bin/usr/local/hive/


配置hive的环境变量
下面贴出我的~.bashrc环境变量配置:
export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60
export JRE_HOME=${JAVA_HOME}/jre
export SCALA_HOME=/usr/local/scala/scala-2.10.4
export HADOOP_HOME=/usr/local/hadoop/hadoop-2.6.0
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_HOME}/lib/native
export HADOOP_OPTS="-Djava.library.path=${HADOOP_HOME}/lib"
export SPARK_HOME=/usr/local/spark/spark-1.6.0-bin-hadoop2.6
export ZOOKEEPER_HOME=/usr/local/zookeeper/zookeeper-3.4.6
export HIVE_HOME=/usr/local/hive/apache-hive-1.2.1-bin
export HIVE_CONF_DIR=${HIVE_HOME}/conf
export CLASS_PATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib:${HIVE_HOME}/lib
export PATH=.:${JAVA_HOME}/bin:${SCALA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:${SPARK_HOME}/bin:${ZOOKEEPER_HOME}/bin:${HIVE_HOME}/bin:$PATH

Hive的相关配置如下(红框内):



执行source ~/.bashrc 使配置生效!

3.把mysql的jdbc驱动 mysql-connector-java-5.1.35-bin.jar拷贝到/usr/local/hive/apache-hive-1.2.1-bin/
msyql驱动下载文章结尾!
4.将 hive-default.xml.template拷贝一份出来为hive-site.xml,并修改hive-site.xml文件中下面配置的值:
root@master1:/usr/local/hive/apache-hive-1.2.1-bin/conf# cp -a hive-default.xml.template hive-site.xml
 <property>
  <name>javax.jdo.option.ConnectionURL</name>
  <value>jdbc:mysql://master1:3306/hive?createDatabaseIfNotExist=true</value>
 </property>
 <property>
  <name>javax.jdo.option.ConnectionDriverName</name>
  <value>com.mysql.jdbc.Driver</value>
 </property>
 <property>
  <name>javax.jdo.option.ConnectionUserName</name>
  <value>root</value>
 </property>
 <property>
  <name>javax.jdo.option.ConnectionPassword</name>
  <value>admin</value>
 </property>
<property>
   <name>hive.metastore.warehouse.dir</name>
   <value>/user/hive/warehouse</value>
   <description>location of default database for the warehouse</description>
 </property>
<property>
   <name>hive.metastore.warehouse.dir</name>
   <value>/user/hive/warehouse</value>
   <description>location of default database for the warehouse</description>
 </property>
<property>
  <name>hive.querylog.location</name>
  <value>/usr/local/hive/iotmp/</value>
  <description>Location of Hive run time structured log file</description>
</property>
<property>
  <name>hive.server2.logging.operation.log.location</name>
  <value>/usr/local/hive/iotmp/operation_logs</value>
  <description>Top level directory where operation logs are stored if logging functionality is enabled</description>
</property>
<property>
  <name>hive.exec.local.scratchdir</name>
  <value>/usr/local/hive/iotmp/</value>
  <description>Local scratch space for Hive jobs</description>
  </property>
<property>
  <name>hive.downloaded.resources.dir</name>
  <value>/usr/local/hive/iotmp/${hive.session.id}_resources</value>
  <description>Temporary local directory for added resources in the remote file system.</description>
  </property


5.配置hive-env.sh
在最后添加下面的配置:
root@master1:/usr/local/hive/apache-hive-1.2.1-bin/conf# cp -a hive-env.sh.template hive-env.sh

export HIVE_HOME=/usr/local/hive/apache-hive-1.2.1-bin
export HIVE_CONF_DIR=/usr/local/hive/apache-hive-1.2.1-bin/conf


6.配置 hive-config.sh
在最后面添加下面的配置:
root@master1:/usr/local/hive/apache-hive-1.2.1-bin/bin# vim hive-config.sh

export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60
export HADOOP_HOME=/usr/local/hadoop/hadoop-2.6.0
export SPARK_HOME=/usr/local/spark/spark-1.6.0-bin-hadoop2.6

注意:
hadoop的版本是2.6.0,hive的版本是1.2.1,$HIVE_HOME/lib目录下的jline-2.12.jar比$HADOOP_HOME/share/hadoop/yarn/lib下的jline-0.9.94.jar版本高,版本不一致导致。
拷贝hive中的jline-2.12.jar到$HADOOP_HOME/share/hadoop/yarn/lib下,并重启hadoop即可。
root@master1:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/yarn/lib# mv jline-0.9.94.jar jline-0.9.94.jar20160305
root@master1:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/yarn/lib# cp $HIVE_HOME/lib/jline-2.12.jar ./

7.启动hive
首先要启动hadoop集群,并且保证mysql已经启动。


5.练习使用hive
Hive默认有一个Default的数据库,默认建表会建到该数据库中,表名不区分大小写。
5.1.创建testdb数据库
hive> create database testdb;
OK
Time taken: 0.125 seconds
hive> use testdb;
OK
Time taken: 0.068 seconds
hive> show databases;
OK
default
testdb
Time taken: 0.026 seconds, Fetched: 2 row(s)
hive> use testdb;
OK
Time taken: 0.059 seconds
hive> 

5.2创建内部表
内部表特点:数据加载到内部表中是,如果数据在本地会在将本地数据拷贝一份到内部LOCATION指定的目录下,如果数据在hdfs上,则会将hdfs中的数据mv到内部表指定的LOCATION中。删除内部表时,会删除相应LOCATION下的数据。

hive> create table student(id int);
OK
Time taken: 0.113 seconds
hive>

hive在hdfs中的默认位置是/user/hive/warehouse,该位置可以修改,是由配置文件hive-site.xml中属性hive.metastore.warehouse.dir决定的,会在/user/hive/warehouse/testdb.db下创建student目录。
通过浏览器可以查看:


5.3.加载数据到student表中
在linux的/usr/local/hive目录下创建文件,文件名为student,里面包含一列数据可以用数字;

第一种加载数据到student中
注意:使用load加载数据到数据库中是不使用mapreduce的,而桶类型的表用insert要用到mapreduce。
hive> LOAD DATA LOCAL INPATH '/usr/local/hive/student' INTO TABLE student;
Loading data to table testdb.student
Table testdb.student stats: [numFiles=1, totalSize=11]
OK
Time taken: 1.717 seconds
hive> select * from student;
OK
1
2
3
5
6
NULL
Time taken: 0.572 seconds, Fetched: 6 row(s)

使用select * 不加条件时,不执行MapReduce,执行比较快;最后一行显示的是null,原因是文件中有一行空格;

第二种加载数据到student中的方法
在/usr/local/hive/目录下创建student_1文件,并写入一列数字;
执行命令hadoop fs -put /usr/local/hive/student_1 /user/hive/warehouse/testdb.db/student
或者 hdfs dfs -put  /usr/local/hive/student_1 /user/hive/warehouse/testdb.db/student
查看结果:
hive> select * from student where id is not null;
OK
1
2
3
5
6
4
7
8
9
10
11
Time taken: 0.15 seconds, Fetched: 11 row(s)
hive> 

在浏览器中查看,会将数据放到/user/hive/warehouse/testdb.db/student目录下,如下图:


6.创建表student2,有多个列的情况
创建表,指定分隔符为\t
hive> CREATE TABLE student2(id int, name string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
OK
Time taken: 0.108 seconds

创建文件,第一列数字,第二列是string类型的,两列之间用\t分割;
上传文件,执行命令
hdfs dfs -put /usr/local/hive/student2 /user/hive/warehouse/testdb.db/student2


查看student2表中的内容:
hive> select * from student2;
OK
1    zhangsan
2    lisi
3    wangwu
4    张飞
5    孙悟空
6    猪八戒
Time taken: 0.111 seconds, Fetched: 6 row(s)

注意:内部表会将数据拷贝一份到表目录下面,如果删除内部表元数据,那么该元数据下面的数据也会被删除;

7.创建分区表
创建分区表student3,指定分区为d
hive> CREATE TABLE student3(id int) PARTITIONED BY (d int);
OK
Time taken: 0.134 seconds

创建数据

加载数据到student3中,将student3_1加载到d=1的分区中,将student3_2加载到d=2的分区中。
LOAD DATA LOCAL INPATH '/usr/local/hive/student3_1' INTO TABLE student3 PARTITION (d=1);
LOAD DATA LOCAL INPATH '/usr/local/hive/student3_2' INTO TABLE student3 PARTITION (d=2);


说明:第一列是数据,第二列是分区d;

8. 桶表
(表连接时候使用,根据桶的个数进行取模运算,将不同的数据放到不同的桶中)
创建桶类型的表
create table student4(id int) clustered by(id) into 4 buckets;
必须启用桶表
set hive.enforce.bucketing = true;
插入数据,这里并没有使用load,而是用的insert,insert加载数据使用了mapreduce。
insert into table student4 select id from student3;

从执行过程中可以看出:桶类型的表用insert要用到mapreduce。

用浏览器查看,创建4个桶,所以生成了4个文件进行存储,分桶的是对4取膜,结果为0的放到了00000_0中,结果为1的放到00000_1中,依次类推;



9.外部表
外部表的特点是:删除表的时候,只删除表定义,不删除表内容。
首先创建/user/hive/data目录,再将/usr/local/hive/student文件上传到/user/hive/data目录中。
root@master1:/usr/local/hive# hdfs dfs -mkdir /user/hive/data/
16/03/05 19:36:07 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
root@master1:/usr/local/hive# hdfs dfs -put student /user/hive/data
16/03/05 19:37:10 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
root@master1:/usr/local/hive#

创建外部表
create external table student5(id int) location '/user/hive/data/';
说明:如果不指定location,默认的location是/user/hive/warehouse/student5(也即是hdfs://master1:9000/user/hive/warehouse/student6)


查看浏览器,发现外部表创建后并没有在hdfs中产生目录


登录到mysql数据库查看,发现外部表和内部表的LOCATION不一样了。

select * from SDS;
select * from TBLS;
删除外部表student5查看hdfs上的数据是否被删除,
hive> drop table student5;
OK
Time taken: 0.105 seconds

再次查看mysql数据库,发现表结构已经删除,但是数据还是在hdfs上存在。



10.外部分区表
创建外部分区表
drop table if exists student6;
create EXTERNAL TABLE IF NOT EXISTS student6(
id int
)
PARTITIONED BY (d string);



将/usr/local/hive/student3_1和student3_2文件分别上传到/user/hive/warehouse/student6/d=1和/user/hive/warehouse/student6/d=2目录中;


分别加载/user/hive/warehouse/student6/d=1和/user/hive/warehouse/student6/d=2中的数据到分区d=1和d=2中;
ALTER TABLE student6 ADD PARTITION (d='1')LOCATION '/user/hive/warehouse/student6/d=1';


11.hive中的视图
创建student6表的视图,并查询视图
create view vw_student6(id) as select id from (select * from student6 where d=1 union all select * from student6 where d=2)a;


其他Hive命令简单介绍
limit命令:select * from t1 limit 3;只会查询出3条记录。
order by 是对结果进行全排序,使用一个reducer,效率较差
sort by 是对每个reducerjinx局部排序,不对整体结果排序,效率较高
distribute by 指的是对mapper的输出按照指定字段,把数据传递到reducer端;
cluster by 子句相当于sort by和distribute by一起操作。
强转:使用函数CAST(id AS long)把id的类型强转为long类型。

详细的可参考官网:http://hive.apache.org/
  • 大小: 30.7 KB
  • 大小: 23 KB
  • 大小: 69.7 KB
  • 大小: 46 KB
  • 大小: 8.5 KB
  • 大小: 48.5 KB
  • 大小: 51.2 KB
  • 大小: 18.7 KB
  • 大小: 80.2 KB
  • 大小: 18.2 KB
  • 大小: 46 KB
  • 大小: 7.8 KB
  • 大小: 65.8 KB
  • 大小: 58.7 KB
  • 大小: 165.5 KB
  • 大小: 115.8 KB
  • 大小: 33.5 KB
  • 大小: 140.9 KB
  • 大小: 60.8 KB
  • 大小: 111.5 KB
  • 大小: 53.8 KB
  • 大小: 95.3 KB
  • 大小: 72.7 KB
  • 大小: 22.7 KB
分享到:
评论

相关推荐

    Hive1.2.1安装指南

    ### Hive 1.2.1 安装指南详解 #### 一、概述 本文档将详细介绍如何安装Hive 1.2.1版本,并解决在安装过程中可能遇到的一个常见错误。Hive是一款基于Hadoop的数据仓库工具,可以将结构化的数据文件映射成一张表,并...

    hadoop 2.6.0 安装包

    - **Hive**:基于Hadoop的数据仓库工具,用于查询和管理大数据。 - **Pig**:高级数据流语言和执行框架,简化对Hadoop的数据处理。 - **Spark**:快速、通用的分布式计算系统,可与Hadoop生态系统无缝集成。 - *...

    hadoop-2.6.0

    此外,Hadoop 2.6.0还包含许多其他组件,如HBase(一个分布式数据库)、Hive(一个数据仓库工具)、Pig(一种高级数据处理语言)和Sqoop(用于在Hadoop和传统数据库间导入导出数据的工具)。这些组件共同构建了一个...

    hadoop-2.6.0.tar.gz&hadoop-2.6.0-cdh5.16.2.tar.gz

    而hadoop-2.6.0-cdh5.16.2.tar.gz则是Cloudera公司推出的基于Hadoop 2.6.0的CDH(Cloudera Distribution Including Apache Hadoop)版本。CDH是业界广泛采用的企业级Hadoop发行版,它不仅集成了Hadoop的核心组件,还...

    hadoop2.6.0版本hadoop.dll和winutils.exe

    4. **安装与配置**: 在Windows上搭建Hadoop 2.6.0环境时,需要正确配置环境变量,包括HADOOP_HOME,指向Hadoop的安装目录,以及Path变量,包含%HADOOP_HOME%\bin,以便系统能够找到hadoop.dll和winutils.exe。...

    spark-assembly-1.5.2-hadoop2.6.0jar包

    总的来说,Spark-assembly-1.5.2-hadoop2.6.0.jar是开发和部署基于Spark的分布式大数据应用的关键组件,它的存在使得开发人员能够轻松地在Scala环境中利用Spark的强大功能。尽管随着Spark版本的更新,新的特性不断...

    apache-hive-1.2.1-bin.tar.gz

    Apache Hive 是一个基于 Hadoop 的数据仓库工具,它允许用户使用 SQL 类似的查询语言(称为 HiveQL)来处理和分析存储在 Hadoop 分布式文件系统(HDFS)中的大量数据。Hive 提供了数据汇总、离线分析以及结构化数据...

    Hive_1.2.1_Tez_0.9.1安装包.rar

    Hive是基于Hadoop的数据仓库工具,能够将结构化的数据文件映射为一张数据库表,并提供SQL(HQL)接口进行数据查询和分析。而Tez则是一个执行框架,用于优化和加速Hadoop上的复杂数据处理任务。 Hive 1.2.1是Hive的...

    hive2.1.1 + hadoop2.6.0jdbc驱动

    标题 "hive2.1.1 + hadoop2.6.0 jdbc驱动" 指的是一个包含特定版本的Hive和Hadoop组件的集合,这些组件特别针对通过JDBC进行数据库连接进行了优化。Hive是Apache软件基金会开发的一个数据仓库工具,它允许用户使用...

    hive1.2.1-mysql-connector.rar

    用户可以解压此文件在本地或Hadoop集群上安装和配置Hive。 2. `mysql-connector-java-5.1.32-bin.jar`:这是MySQL JDBC驱动的特定版本(5.1.32),用于Java应用程序连接到MySQL数据库。在Hive中,当选择MySQL作为元...

    hadoop2.6.0(winutils、hadoop.dll)

    6. **Hadoop生态集成**: 使用winutils.exe和hadoop.dll,Windows开发者可以与其他Hadoop生态系统项目(如Hive、Pig、Spark等)进行集成,进行数据分析和处理任务。 7. **开发与调试**: 对于开发人员来说,了解...

    hadoop 2.6.0 eclipse 需求包 依赖 jar

    这些库是Hadoop 2.6.0版本的核心组件,对于理解和使用Hadoop生态系统至关重要。 描述中提到的"WordCount实例"是Hadoop的典型入门示例,用于统计文本文件中单词出现的次数。在Hadoop 2.6.0中,运行这个例子至少需要...

    apache-hive-1.2.1

    Apache Hive 是一个基于Hadoop的数据仓库工具,它允许用户通过SQL-like语言(称为HQL,Hive Query Language)对大规模数据集进行分析和查询。在标题"apache-hive-1.2.1"中,我们可以推测这是一个关于Apache Hive ...

    hive1.2.1安装包及安装配置文档.rar

    总之,Hive 1.2.1的安装和配置涉及多个步骤,包括环境准备、配置文件修改、启动服务以及后续的使用和优化。提供的压缩包"hive1.2.1安装包及安装配置文档"应该包含了所有必要的指南和文档,帮助用户顺利地完成Hive的...

    hadoop-2.6.0-cdh5.7.0.tar.gz

    Hadoop 2.6.0是Hadoop发展过程中的一个重要版本,它在Hadoop 2.x系列中引入了许多改进和优化,包括提升系统性能、增强容错性和稳定性,以及提供了更丰富的功能。CDH(Cloudera Distribution Including Apache Hadoop...

    hive1.2.1用mysql作为元数据库搭建DT-大数据.pdf

    Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供SQL查询功能。Hive适用于处理大规模数据集的批处理作业。Hive定义了一种类SQL查询语言HiveQL,允许熟悉SQL的开发者进行数据...

    hadoop-2.6.0-cdh5.14.2.tar.gz

    "hadoop-2.6.0-cdh5.14.2.tar.gz" 是一个针对Hadoop的特定版本的压缩包,包含了在CDH(Cloudera Distribution Including Apache Hadoop)5.14.2环境下运行的Hadoop 2.6.0的所有组件和依赖。 Hadoop 2.6.0是Hadoop...

    apache-hive-1.2.1-bin.tar.gz.zip

    Apache Hive 是一个基于 Hadoop 的数据仓库工具,用于查询、管理和处理存储在 Hadoop 分布式文件系统(HDFS)中的大规模数据集。Hive 提供了一种结构化的数据模型和SQL-like 查询语言(HQL),使得非程序员也能对...

    大数据离线分析系统,基于hadoop的hive以及sqoop的安装和配置

    本主题将深入探讨如何构建一个基于Hadoop的大数据离线分析系统,并着重讲解Hive和Sqoop的安装与配置。Hadoop是分布式计算框架,而Hive是基于Hadoop的数据仓库工具,用于数据 warehousing 和 SQL-like 查询。另一方面...

Global site tag (gtag.js) - Google Analytics