`

StatsD 五种类型数据发送形式拟测试

阅读更多

        statsd 五种类型数据发送形式拟测试

        

StatsD Metric Types

Counting

gorets:1|c

This is a simple counter. Add 1 to the "gorets" bucket. At each flush the current count is sent and reset to 0. If the count at flush is 0 then you can opt to send no metric at all for this counter, by setting config.deleteCounters (applies only to graphite backend). Statsd will send both the rate as well as the count at each flush.

Sampling

gorets:1|c|@0.1

Tells StatsD that this counter is being sent sampled every 1/10th of the time.

Timing

glork:320|ms|@0.1

The glork took 320ms to complete this time. StatsD figures out percentiles, average (mean), standard deviation, sum, lower and upper bounds for the flush interval. The percentile threshold can be tweaked with config.percentThreshold.

The percentile threshold can be a single value, or a list of values, and will generate the following list of stats for each threshold:

stats.timers.$KEY.mean_$PCT
stats.timers.$KEY.upper_$PCT
stats.timers.$KEY.sum_$PCT

Where $KEY is the stats key you specify when sending to statsd, and $PCT is the percentile threshold.

Note that the mean metric is the mean value of all timings recorded during the flush interval whereas mean_$PCT is the mean of all timings which fell into the $PCT percentile for that flush interval. And the same holds for sum and upper. Seeissue #157 for a more detailed explanation of the calculation.

If the count at flush is 0 then you can opt to send no metric at all for this timer, by setting config.deleteTimers.

Use the config.histogram setting to instruct statsd to maintain histograms over time. Specify which metrics to match and a corresponding list of ordered non-inclusive upper limits of bins (class intervals). (use inf to denote infinity; a lower limit of 0 is assumed) Each flushInterval, statsd will store how many values (absolute frequency) fall within each bin (class interval), for all matching metrics. Examples:

  • no histograms for any timer (default): []
  • histogram to only track render durations, with unequal class intervals and catchall for outliers:

      [ { metric: 'render', bins: [ 0.01, 0.1, 1, 10, 'inf'] } ]
    
  • histogram for all timers except 'foo' related, with equal class interval and catchall for outliers:

      [ { metric: 'foo', bins: [] },
        { metric: '', bins: [ 50, 100, 150, 200, 'inf'] } ]
    

Statsd also maintains a counter for each timer metric. The 3rd field specifies the sample rate for this counter (in this example @0.1). The field is optional and defaults to 1.

Note:

  • first match for a metric wins.
  • bin upper limits may contain decimals.
  • this is actually more powerful than what's strictly considered histograms, as you can make each bin arbitrarily wide, i.e. class intervals of different sizes.

Gauges

StatsD now also supports gauges, arbitrary values, which can be recorded.

gaugor:333|g

If the gauge is not updated at the next flush, it will send the previous value. You can opt to send no metric at all for this gauge, by setting config.deleteGauges

Adding a sign to the gauge value will change the value, rather than setting it.

gaugor:-10|g
gaugor:+4|g

So if gaugor was 333, those commands would set it to 333 - 10 + 4, or 327.

Note:

This implies you can't explicitly set a gauge to a negative number without first setting it to zero.

Sets

StatsD supports counting unique occurences of events between flushes, using a Set to store all occuring events.

uniques:765|s

If the count at flush is 0 then you can opt to send no metric at all for this set, by setting config.deleteSets.

Multi-Metric Packets

StatsD supports receiving multiple metrics in a single packet by separating them with a newline.

gorets:1|c\nglork:320|ms\ngaugor:333|g\nuniques:765|s

Be careful to keep the total length of the payload within your network's MTU. There is no single good value to use, but here are some guidelines for common network scenarios:

  • Fast Ethernet (1432) - This is most likely for Intranets.
  • Gigabit Ethernet (8932) - Jumbo frames can make use of this feature much more efficient.
  • Commodity Internet (512) - If you are routing over the internet a value in this range will be reasonable. You might be able to go higher, but you are at the mercy of all the hops in your route.

          而在国外基于 StatsD 产生了一系列的工具,或者在成熟的项目基础之上,开始兼容 StatsD。如果按照方向可以划分为如图的几个方向。

有了数据和信息可以做很多事,包括数据集成、可视化、可视化+存储、事件流,甚至将这些结合做出一体化解决方案,针对不同的需求,不同的市场,每一个方向都能产生独特价值。接下来我们大致介绍一下这几个方向。

Integrations

StatsD 本身并不负责定义指标的涵义,所以如果要从数据库或者操作系统中采集数据,需要进行脚本的开发。其中在这方面做出突出贡献的是 Datadog。Datadog 开发的 dd-agent 项目在 GitHub 多达 150 个贡献者,兼容 60 多种操作系统、中间件、数据库。

除此之外,Librato 和 App First 也加入到 StatsD 的阵营中。而基础设施管理的解决方案:Puppet 和 Chef 也开始兼容将 StatsD 批量安装到基础设施中。

Visualization & Data Hosting

光有数据是不够的,良好的可视化才能将数据的作用发挥出来。在可视化这一块影响力较大的 Graphite 作为一个可视化的控件,不仅包含可视化还自带存储的部分。但也有不少人反映 Graphite 自带的界面太难看,得益于开源世界的伟大,我们有了 Grafana 可用,直接部署在nginx上面就行,使用node.js 实现的数据抓取。单论可视化,Grafana 是做得最好的一家,其展现形式丰富,可配置项目巨细靡遗。Signal FX 后来居上,也参与到竞争中。

在数据可视化的基础之上,也有服务开始从事可视化数据的托管服务。例如:Host Graphite。

时间序列数据库和事件处理引擎

其实 StatsD 和时间序列数据库的出现,是相辅相成的。在 OpenTSDB 和 InfluxDB 基础之上,StatsD 的应用才日渐丰满。InfluxDB 是一个开源分布式时序、事件和指标数据库,使用 Go 语言编写,无需外部依赖。对于运维工程师而言,OpenTSDB 可以获取基础设施和服务的实时状态信息,展示集群的各种软硬件错误,性能变化以及性能瓶颈。

再说说事件处理引擎,比如 Bosun 是一个新型的监控和告警系统,使用 golfing 编写,支持定义复杂的告警规则,支持 OpenTSDB、Graphite、Logstash-Elasticsearch 等数据源。Riemann 也开始与时间序列数据库,或者基于 StastD 的一体化解决方案对接,来弥补一些数据展现产品在报警这个方向上的不足。

一体化解决方案

那么,有没有能包含数据集成、可视化、数据存储、事件流处理于一体的解决方案呢?对于中小型企业尤其创业公司来说,自主开发或者利用现有的开源工具进行监控或多或少都会遇到一些问题,既要考虑成本又怕踩坑。这时候除开上述细分的方向之外,提供一体化解决方案的厂商及时出现了。国外这样的厂商有 Datadog、Librato 等等。其中 Datadog 在国外拥有 Facebook、Airbnb 等重量级客户,正大展风头。

分享到:
评论

相关推荐

    nginx-statsd, 用于将统计信息发送到statsd的Nginx 模块.zip

    nginx-statsd, 用于将统计信息发送到statsd的Nginx 模块 statsd用于向statsd发送统计信息的Nginx 模块。这就是如何使用 nginx-statsd模块:http { # Set the server that you want to send stats to.

    statsd 安装 配置 部署 使用文档

    2. **服务器(server)**:Statsd服务器接收客户端发送的数据,执行聚合操作,如计数、平均值计算等,并按照设定的时间间隔将处理后的数据发送到后端存储。 3. **后端(backend)**:后端存储系统接收Statsd服务器推...

    statsd搭建和配置手册1

    另外,由于statsd将数据发送到Kafka,还需要安装`kafka-node`,使用`npm install kafka-node -S`命令。 5. **验证运行**:运行`./run_tests.sh`脚本来测试statsd是否能成功运行。如果遇到问题,可能是因为网络环境或...

    统计数据收集器StatsD.zip

    StatsD支持四种基本的统计类型:计数器(counter)、计时器(timer)、直方图(histogram)和 Gauge(度量)。收到数据后,StatsD会进行简单的聚合操作,如求和、平均值计算等,然后按照配置周期性地将结果发送给...

    前端开源库-statsd-client

    5. **性能优化**:通过批量发送数据和使用UDP协议,`statsd-client`在保持低延迟的同时,确保了高吞吐量的数据传输。 **使用示例** 在实际应用中,你可以这样使用`statsd-client`: ```javascript const StatsD =...

    前端开源库-node-statsd

    总结,`node-statsd` 是前端开发者实现性能监控的一个强大工具,通过它,你可以轻松地集成统计指标收集,并将这些数据发送到后端监控系统,以便进行深入的数据分析和故障排查。其简单易用的 API 和高度可配置的特性...

    开源项目-alexcesaro-statsd.zip

    其中,StatsD是一个流行的数据聚合服务器,它允许收集来自各种来源的统计信息,并将其转发到诸如Graphite、Elasticsearch等后端系统进行可视化和分析。本文将详细介绍一个开源项目——Alexcesaro-statsd,这是一个专...

    delphi-使用delphi实现的statsd客户端库-允许java应用与statsd通信.zip

    StatsD接收的是简单的文本协议,每个指标以一行的形式发送,格式通常是`<metric_name>:|<metric_type>\n`,其中`<metric_name>`是指标的名称,`<value>`是指标的值,`<metric_type>`可以是计数(c)、计时(ms)或...

    C implementation of statsd.zip

    statsd是一种流行的性能数据收集代理,最初由 Etsy 开发,用于收集应用程序的度量数据,如计数器、计时器和直方图,然后将这些数据发送到图形后端如 Graphite 进行可视化。本文将深入探讨如何使用C语言来实现statsd...

    fsd:用于 golang 的基于 Func 的 statsd 客户端,在 udp 发送失败的情况下,通过使用缓冲通道和重新连接建立或多或少直接返回

    Golang是一种静态类型的、编译型的语言,以其简洁的语法、高效的性能和内置的并发支持而受到欢迎,非常适合构建网络服务和系统工具,包括像statsd客户端这样的监控组件。 在压缩包文件名列表中,"fsd-master"可能...

    statsdtest:一个简单的脚本来测试statsd向我们的内部服务器发送消息

    这样,statsdtest会模拟发送一系列测试数据到指定的StatsD服务器,这些数据可以是计数器、计时器、 Gauge 或者分布。通过这种方式,我们可以检查StatsD服务器是否能正常接收这些数据,并确保它们被正确地转发到后端...

    Laravel开发-laravel-statsd

    使用`Statsd` facade,你可以发送各种类型的数据,例如计数器、计时器和 Gauge: ```php use Statsd; // 记录一个计数器事件,增加1 Statsd::increment('requests.total'); // 记录一个计时事件,例如路由处理...

    Python-pythonstatsdstatsd服务器的Python客户端

    7. **自定义前缀**:可以通过配置`prefix`参数,为所有发送的数据添加一个共享前缀,便于在statsd服务器上组织数据: ```python statsd = StatsClient('localhost', 8125, prefix='myapp') ``` 8. **采样率...

    laravel-statsd:从 Laravel 发送到 Statsd

    允许您从 Laravel 应用程序中无缝地将数据发送到 Statsd 服务器。 安装 添加rcrowe\laravel-statsd作为对 composer.json 的要求: { "require" : { "rcrowe/laravel-statsd" : "0.5.*" } } 使用composer ...

    couch-statsd-backend:将 statsd 发送到 couchdb 的后端

    沙发统计后端后端,将统计信息发布到安装在您的 statsd 安装中: npm install couch-statsd-backend配置 { port: 8125 ,deleteIdleStats: true //, couchhost: '192.168.3.21' //default: localhost //, couchport: ...

    docker-graphite-statsd, 用于 Graphite & Statsd的Docker 图像.zip

    docker-graphite-statsd, 用于 Graphite & Statsd的Docker 图像 用于 Graphite & Statsd的 Docker 映像立即运行 Graphite & StatsdGraphite & Statsd可能对安装程序很复杂。 这个映像将在几分钟内运行&

    node-dogstatsd, Datadog StatsD扩展服务器的node.js 客户端.zip

    node-dogstatsd, Datadog StatsD扩展服务器的node.js 客户端 节点 dogstatsdDatadog 扩展StatsD服务器的node.js 客户端。Datadog为自己的StatsD实现添加了一些新特性( 直方图和标记) 。 这里客户端是通用StatsD...

    开源项目-amalfra-gin-statsd.zip

    statsd支持多种类型的数据,包括计数(counters)、计时器(timers)、直方图(histograms)和 gauge(仪表)。通过使用statsd,开发者可以轻松地收集分布式系统中的性能数据,而无需在每个组件中都实现复杂的报告...

    docker-statsd-influxdb-grafana, 带有 Telegraf ( StatsD ),InfluxDB和Grafana的Docker 映像.zip

    docker-statsd-influxdb-grafana, 带有 Telegraf ( StatsD ),InfluxDB和Grafana的Docker 映像 带有 Telegraf ( StatsD ),InfluxDB和Grafana的 Docker 映像

    statsd-librato-backend:StatsD后端,用于将指标发送到Librato Metrics

    StatsD Librato后端 突破性变化:从2.0.0版开始,statsd-librato-backend需要一个的Librato帐户。 如果您的Librato帐户尚不支持标记的指标,或者您使用的,请使用。 总览 这是的可插入后端,它将stats发布到 。 ...

Global site tag (gtag.js) - Google Analytics