`
IXHONG
  • 浏览: 450321 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Jedis一致性hash与sharding

阅读更多

    一、Jedis一致性hash

    利用缓存技术,不仅可以提升系统性能,还能缓解系统故障。对于redis 3.0以下的版本,redis-server没有sharding的功能,只有master-slave模式。目前企业用的普遍都是只有m/s模式的redis多实例部署,无论是master还是slave挂掉,都需要调整程序配置(或代码)。Jedis为我们提供了编程级别的sharding方式,本文主要介绍相关API使用方法。

 

     Jedis中sharding基于一致性hash算法,hash值计算采取MD5作为辅助,此算法似乎已成事实上的标准,不过较新的版本采用的是谷歌的murmur_hash算法(MD5 is really not good?)。

 

public interface Hashing {
  public static final Hashing MURMUR_HASH = new MurmurHash();
  public ThreadLocal<MessageDigest> md5Holder = new ThreadLocal<MessageDigest>();
         // 基于MD5的一致性hash算法实现
  public static final Hashing MD5 = new Hashing() {
    public long hash(String key) {
      return hash(SafeEncoder.encode(key));
    }

    public long hash(byte[] key) {
      try {
        if (md5Holder.get() == null) {
          md5Holder.set(MessageDigest.getInstance("MD5"));
        }
      } catch (NoSuchAlgorithmException e) {
        throw new IllegalStateException("++++ no md5 algorythm found");
      }
      MessageDigest md5 = md5Holder.get();

      md5.reset();
      md5.update(key);
      byte[] bKey = md5.digest(); // 获得MD5字节序列
      // 前四个字节作为计算参数,最终获得一个32位int值.  
      // 此种计算方式,能够确保key的hash值更加“随即”/“离散”  
      // 如果hash值过于密集,不利于一致性hash的实现(特别是有“虚拟节点”设计时) 
      long res = ((long) (bKey[3] & 0xFF) << 24) | ((long) (bKey[2] & 0xFF) << 16)
          | ((long) (bKey[1] & 0xFF) << 8) | (long) (bKey[0] & 0xFF);
      return res;
    }
  };

  public long hash(String key);

  public long hash(byte[] key);
}

 

    node构建过程:

//shards列表为客户端提供了所有redis-server配置信息,包括:ip,port,weight,name
//其中weight为权重,将直接决定“虚拟节点”的“比例”(密度),权重越高,在存储是被hash命中的概率越高
//--其上存储的数据越多。
//其中name为“节点名称”,jedis使用name作为“节点hash值”的一个计算参数。
//---
//一致性hash算法,要求每个“虚拟节点”必须具备“hash值”,每个实际的server可以有多个“虚拟节点”(API级别)
//其中虚拟节点的个数= “逻辑区间长度” * weight,每个server的“虚拟节点”将会以“hash”的方式分布在全局区域中
//全局区域总长为2^32.每个“虚拟节点”以hash值的方式映射在全局区域中。
// 环形:0-->vnode1(:1230)-->vnode2(:2800)-->vnode3(400000)---2^32-->0
//所有的“虚拟节点”将按照其”节点hash“顺序排列(正序/反序均可),因此相邻两个“虚拟节点”之间必有hash值差,
//那么此差值,即为前一个(或者后一个,根据实现而定)“虚拟节点”所负载的数据hash值区间。
//比如hash值为“2000”的数据将会被vnode1所接受。
//---
private void initialize(List<S> shards) {
	nodes = new TreeMap<Long, S>();//虚拟节点,采取TreeMap存储:排序,二叉树

	for (int i = 0; i != shards.size(); ++i) {
	    final S shardInfo = shards.get(i);
	    if (shardInfo.getName() == null)
                //当没有设置“name”是,将“SHARD-NODE”作为“虚拟节点”hash值计算的参数
                //"逻辑区间步长"为160,为什么呢??
                //最终多个server的“虚拟节点”将会交错布局,不一定非常均匀。
	    	for (int n = 0; n < 160 * shardInfo.getWeight(); n++) {
	    		nodes.put(this.algo.hash("SHARD-" + i + "-NODE-" + n), shardInfo);
	    	}
	    else
	    	for (int n = 0; n < 160 * shardInfo.getWeight(); n++) {
	    		nodes.put(this.algo.hash(shardInfo.getName() + "*" + shardInfo.getWeight() + n), shardInfo);
	    	}
	    resources.put(shardInfo, shardInfo.createResource());
	}
}

 

    node选择方式:

public R getShard(String key) {
	return resources.get(getShardInfo(key));
}
//here:
public S getShardInfo(byte[] key) {
        //获取>=key的“虚拟节点”的列表
	SortedMap<Long, S> tail = nodes.tailMap(algo.hash(key));
        //如果不存在“虚拟节点”,则将返回首节点。
	if (tail.size() == 0) {
	    return nodes.get(nodes.firstKey());
	}
        //如果存在,则返回符合(>=key)条件的“虚拟节点”的第一个节点
	return tail.get(tail.firstKey());
}

 

    Jedis sharding默认的一致性hash算法比较适合cache-only的情景,不太适合数据持久化情况。在持久存储情况下,我们可以使用“强hash”分片,需要重写hash算法(参加后面的InnerHashing)。强hash算法下,如果某个虚拟节点所在的物理节点故障,将导致数据无法访问,即无法从虚拟节点列表中删除失效的server。

 

    二、API

    ShardedJedis

        JedisShardInfo sd1 = new JedisShardInfo("127.0.0.1", 6379, 15000);
        sd1.setPassword("123456");
        JedisShardInfo sd2 = new JedisShardInfo("127.0.0.1", 6479, 15000);
        sd2.setPassword("123456");
        List<JedisShardInfo> shards = new ArrayList<JedisShardInfo>();
        shards.add(sd1);
        shards.add(sd2);
        ShardedJedis shardedJedis = new ShardedJedis(shards, new InnerHashing());
        String key = "k2sdjowejjroer3";
        shardedJedis.set(key, "v2");
        Charset charset = Charset.forName("utf-8");
        // 注意此处对key的字节转换时,一定要和Innerhashing.hash(String)保持一致
        System.out.println(shardedJedis.get("k2").getBytes(charset));

// Jedis的一致性hash算法已经足够良好,程序员建议不要重写
public class InnerHashing implements Hashing {
    static Charset charset = Charset.forName("utf-8");

    @Override
    public long hash(String key) {
        return hash(key.getBytes(charset));
    }

    @Override
    public long hash(byte[] key) {
        int hashcode = new HashCodeBuilder().append(key).toHashCode();
        return hashcode & 0x7FFFFFFF;
    }
}

 

<bean id="shardedJedis" class="redis.clients.jedis.ShardedJedis">
	<constructor-arg>
		<list>
			<bean class="redis.clients.jedis.JedisShardInfo">
				<constructor-arg value="127.0.0.1"></constructor-arg>
				<constructor-arg value="6379"></constructor-arg>
				<property name="password" value="0123456"></property>
			</bean>
			<bean class="redis.clients.jedis.JedisShardInfo">
				<constructor-arg value="127.0.0.1"></constructor-arg>
				<constructor-arg value="6379"></constructor-arg>
				<property name="password" value="0123456"></property>
			</bean>
		</list>
	</constructor-arg>
</bean>

 

     ShardedJedisPool & ShardedJedisPipeline

        JedisPoolConfig config = new JedisPoolConfig();
        config.setMaxTotal(32);
        config.setMaxIdle(6);
        config.setMinIdle(0);
        config.setMaxWaitMillis(15000);

        JedisShardInfo sd1 = new JedisShardInfo("127.0.0.1", 6379, 15000);
        sd1.setPassword("123456");
        JedisShardInfo sd2 = new JedisShardInfo("127.0.0.1", 6479, 15000);
        sd2.setPassword("123456");
        List<JedisShardInfo> shards = new ArrayList<JedisShardInfo>();
        shards.add(sd1);
        shards.add(sd2);

        ShardedJedisPool sjp = new ShardedJedisPool(config, shards);
        ShardedJedis shardedJedis = sjp.getResource();
        try {
            System.out.println(shardedJedis.get("k2"));

            ShardedJedisPipeline pipeline = new ShardedJedisPipeline();
            pipeline.setShardedJedis(shardedJedis);
            pipeline.set("k4", "v4");
            pipeline.set("k5", "v5");
            pipeline.get("k5");
            List<Object> all = pipeline.syncAndReturnAll();
            for (Object e : all) {
                System.out.println(e);
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            sjp.returnResource(shardedJedis);
        }

 

<bean id="jedisPoolConfig" class="redis.clients.jedis.JedisPoolConfig">
	<property name="maxActive" value="32"></property>
	<property name="maxIdle" value="6"></property>
	<property name="maxWait" value="15000"></property>
	<property name="minEvictableIdleTimeMillis" value="300000"></property>
	<property name="numTestsPerEvictionRun" value="3"></property>
	<property name="timeBetweenEvictionRunsMillis" value="60000"></property>
	<property name="whenExhaustedAction" value="1"></property>
</bean>
<bean id="shardedJedisPool" class="redis.clients.jedis.ShardedJedisPool" destroy-method="destroy">
	<constructor-arg ref="jedisPoolConfig"></constructor-arg>
	<constructor-arg>
		<list>
			<bean class="redis.clients.jedis.JedisShardInfo">
				<constructor-arg value="127.0.0.1"></constructor-arg>
				<constructor-arg value="6379"></constructor-arg>
				<property name="password" value="0123456"></property>
			</bean>
			<bean class="redis.clients.jedis.JedisShardInfo">
				<constructor-arg value="127.0.0.1"></constructor-arg>
				<constructor-arg value="6379"></constructor-arg>
				<property name="password" value="0123456"></property>
			</bean>
		</list>
	</constructor-arg>
</bean>

    

    Something:

redis以及其他类似的网络IO server,实现绝对意义上的自动扩容(server端)和自动探测与rebalance,是很难的,同时也有一些风险.

我们现在的做法也比较土:
1) 有个web portal系统,当一个redis实例部署好之后,就是web系统上输入它的IP地址和探测脚本(脚本用来检测redis的内存负载情况,存活情况).
2) 录入之后可以将此redis"上线/下线",即将redis信息同步到zookeeper中(俗称configserver);
3) 所有redis-client端,都接入configserver,获取可用的redis列表;并初始化redis-client.
4) redis-client有一个额外的线程用来与configserver保持通讯,实时的跟踪redis列表的变更.
5) 如果redis列表变更,将导致redis-client端重新调整,主要是重建"一致性hash表".
6) 重建"一致性hash表"的过程,不需要调整代码或者重启服务,这个和hash的设计方式有些关系.

简单的来说,你可以使用任何方式(db,或者JMS订阅)来获取redis集群节点的变更数据即可..对于"客户端一致性hash表"的设计,也需要有些技巧,最好不要因为一个节点的join或者remove,导致大面积缓存的命中失败..

程序中通过合理的配置和编码,我们可以实现写master读slave。

 本人通过查看公司应用系统的监控表明,redis几乎保持 set 2ms get 1ms, sql最快时 count 2ms select 3ms add/update 5ms

 

分享到:
评论

相关推荐

    解决分布式数据插入数据库~一致性hash算法

    在Java实现中,一致性哈希通常会用到如Jedis、Voldemort等分布式存储库。这些库内部实现了哈希函数和虚拟节点的概念,虚拟节点可以看作是对实际节点的多次映射,增加了哈希空间的覆盖,使得数据分布更均匀。然而,...

    jedis-2.5.1.jar

    Jedis 是 Redis 官方首选的 Java 客户端开发包。 实例方法: ? 1 import redis.clients.jedis.* ...Sharding (MD5, MurmurHash) Key-tags for sharding Sharding with pipelining Scripting with pipelining

    jedis jedis.jar

    5. 一致性哈希:通过一致性哈希算法,实现Redis集群的数据分布,保证在添加或移除服务器时,数据迁移的影响最小。 在实际项目中,开发人员通常会将`jedis-2.1.0.jar`和`jedis-2.0.0.jar`这样的库文件包含到项目的类...

    jedis2.8 与 spring3.2 整合

    总的来说,理解并掌握Redis集群部署和Jedis与Spring的整合,对于提升系统的性能和稳定性至关重要。通过实践和学习,开发者可以更好地应对高并发、大数据量的场景,为应用程序提供高效的数据存储和访问能力。

    Jedis所需jar包

    3. 事务处理:支持多条命令的原子性执行,确保数据一致性。 4. 消息订阅与发布:实现发布者和订阅者模式,进行实时消息传递。 5. Lua脚本支持:可以在服务器端执行Lua脚本,实现复杂的数据操作逻辑。 6. 连接池管理...

    jedis依赖jar包

    这个版本包含了许多改进和修复,确保了与Redis服务器的兼容性以及更好的性能和稳定性。在使用Jedis 2.7.0之前,确保你的Redis服务器版本与其兼容,以避免潜在的问题。 **安装与依赖** 要在项目中使用Jedis,首先...

    jedis相关jar包

    此外,Jedis还支持Sentinel和Cluster模式,以适应高可用性和分布式环境的需求。 总的来说,这个压缩包提供了在Java环境中使用Jedis与Redis交互的基础。无论是开发简单的单机应用还是构建复杂的分布式系统,这些jar...

    jedis安装包

    在本文中,我们将深入探讨Jedis的安装、配置、基本操作以及它在实际应用中的重要性。 一、Jedis简介 Jedis是由Xavier Lachier开发的Java Redis客户端,它提供了丰富的Redis命令支持,包括字符串、哈希、列表、集合...

    jedis-2.9.0.jar

    3. **哈希操作**:添加哈希字段 `jedis.hset("hash", "field", "value")`,获取整个哈希 `jedis.hgetAll("hash")`。 4. **列表操作**:向列表尾部添加元素 `jedis.rpush("list", "item")`,获取列表 `jedis.lrange(...

    jedis.jar下载

    3. **性能优秀**:Jedis通过优化的网络通信和序列化机制,确保了与Redis服务器交互的高效性。 4. **连接池管理**:Jedis支持连接池,可以有效管理多个客户端连接,提高并发性能。 5. **集群支持**:Jedis提供对Redis...

    Java通过Jedis操作Redis

    而Java作为广泛使用的编程语言,通过Jedis库与Redis进行交互,实现了对Redis丰富的操作功能。本文将深入探讨如何使用Java和Jedis来操作Redis,涉及Redis的基本数据类型、主从复制以及事务处理。 首先,让我们了解...

    Jedis2.1.0源码与Jar包

    5. **复制与Sentinel支持**:Jedis可以与Redis的复制和Sentinel哨兵系统配合,实现高可用性。 ### Jedis 2.1.0源码分析 Jedis的源码可以帮助我们深入了解其内部工作原理,例如: 1. **连接管理**:包括连接建立、...

    使用redisson替代jedis

    在Java开发领域,开发者可以选择多种客户端来与Redis进行交互,其中最常用的是Jedis和Redisson。本文将详细介绍如何使用Redisson来替代Jedis,并对两者之间的对应方法进行详细对比。 #### Jedis简介 Jedis是用Java...

    jedis5.1.0.jar

    jedis5.1.0.jar

    jedis-2.9.0.jar和commons-pool2-2.6.0.jar下载(jedis连接redis数据库)

    - 在高并发场景下,考虑使用JedisCluster或Sentinel支持的分布式配置,以获得更好的可扩展性和可用性。 通过理解和正确使用Jedis及Apache Commons Pool,Java开发者可以高效地与Redis数据库进行交互,实现数据存储...

    Jedis操作5种数据类型

    在Redis中,有五种基本的数据类型用于存储和操作数据:String、Hash、List、Set和Sorted Set。Jedis是Java开发的Redis客户端库,它提供了丰富的API来操作这些数据类型。下面我们将深入探讨每种数据类型以及如何使用...

    Jedis API中文使用文档.-比较详细

    Jedis API中文使用文档详解 Jedis 是 Redis 官方首选的 Java 客户端开发包,用于操作 Redis 数据库。下面是 Jedis API 的详细使用文档,适合新手和老程序员进行复习。 Jedis 的基本使用 Jedis 提供了多种方式来...

    各种版本的redis+Jedis驱动包

    4. **Jedis**:Jedis是Java语言的Redis客户端库,它提供了丰富的API,使Java开发者能够方便地与Redis进行交互。Jedis支持各种Redis命令,包括数据类型操作、事务处理、发布/订阅、持久化等。在实际项目中,通过Jedis...

Global site tag (gtag.js) - Google Analytics