js版RSA加密实现
// Copyright (c) 2005 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Basic JavaScript BN library - subset useful for RSA encryption. // Bits per digit var dbits; // JavaScript engine analysis var canary = 0xdeadbeefcafe; var j_lm = ((canary&0xffffff)==0xefcafe); // (public) Constructor function BigInteger(a,b,c) { if(a != null) if("number" == typeof a) this.fromNumber(a,b,c); else if(b == null && "string" != typeof a) this.fromString(a,256); else this.fromString(a,b); } // return new, unset BigInteger function nbi() { return new BigInteger(null); } // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i,x,w,j,c,n) { while(--n >= 0) { var v = x*this[i++]+w[j]+c; c = Math.floor(v/0x4000000); w[j++] = v&0x3ffffff; } return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i,x,w,j,c,n) { var xl = x&0x7fff, xh = x>>15; while(--n >= 0) { var l = this[i]&0x7fff; var h = this[i++]>>15; var m = xh*l+h*xl; l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); w[j++] = l&0x3fffffff; } return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i,x,w,j,c,n) { var xl = x&0x3fff, xh = x>>14; while(--n >= 0) { var l = this[i]&0x3fff; var h = this[i++]>>14; var m = xh*l+h*xl; l = xl*l+((m&0x3fff)<<14)+w[j]+c; c = (l>>28)+(m>>14)+xh*h; w[j++] = l&0xfffffff; } return c; } if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { BigInteger.prototype.am = am2; dbits = 30; } else if(j_lm && (navigator.appName != "Netscape")) { BigInteger.prototype.am = am1; dbits = 26; } else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28; } BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = ((1<<dbits)-1); BigInteger.prototype.DV = (1<<dbits); var BI_FP = 52; BigInteger.prototype.FV = Math.pow(2,BI_FP); BigInteger.prototype.F1 = BI_FP-dbits; BigInteger.prototype.F2 = 2*dbits-BI_FP; // Digit conversions var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; var BI_RC = new Array(); var rr,vv; rr = "0".charCodeAt(0); for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; rr = "a".charCodeAt(0); for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; rr = "A".charCodeAt(0); for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; function int2char(n) { return BI_RM.charAt(n); } function intAt(s,i) { var c = BI_RC[s.charCodeAt(i)]; return (c==null)?-1:c; } // (protected) copy this to r function bnpCopyTo(r) { for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s; } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { this.t = 1; this.s = (x<0)?-1:0; if(x > 0) this[0] = x; else if(x < -1) this[0] = x+this.DV; else this.t = 0; } // return bigint initialized to value function nbv(i) { var r = nbi(); r.fromInt(i); return r; } // (protected) set from string and radix function bnpFromString(s,b) { var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 256) k = 8; // byte array else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else { this.fromRadix(s,b); return; } this.t = 0; this.s = 0; var i = s.length, mi = false, sh = 0; while(--i >= 0) { var x = (k==8)?s[i]&0xff:intAt(s,i); if(x < 0) { if(s.charAt(i) == "-") mi = true; continue; } mi = false; if(sh == 0) this[this.t++] = x; else if(sh+k > this.DB) { this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; this[this.t++] = (x>>(this.DB-sh)); } else this[this.t-1] |= x<<sh; sh += k; if(sh >= this.DB) sh -= this.DB; } if(k == 8 && (s[0]&0x80) != 0) { this.s = -1; if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; } this.clamp(); if(mi) BigInteger.ZERO.subTo(this,this); } // (protected) clamp off excess high words function bnpClamp() { var c = this.s&this.DM; while(this.t > 0 && this[this.t-1] == c) --this.t; } // (public) return string representation in given radix function bnToString(b) { if(this.s < 0) return "-"+this.negate().toString(b); var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else return this.toRadix(b); var km = (1<<k)-1, d, m = false, r = "", i = this.t; var p = this.DB-(i*this.DB)%k; if(i-- > 0) { if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } while(i >= 0) { if(p < k) { d = (this[i]&((1<<p)-1))<<(k-p); d |= this[--i]>>(p+=this.DB-k); } else { d = (this[i]>>(p-=k))&km; if(p <= 0) { p += this.DB; --i; } } if(d > 0) m = true; if(m) r += int2char(d); } } return m?r:"0"; } // (public) -this function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } // (public) |this| function bnAbs() { return (this.s<0)?this.negate():this; } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s-a.s; if(r != 0) return r; var i = this.t; r = i-a.t; if(r != 0) return (this.s<0)?-r:r; while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; return 0; } // returns bit length of the integer x function nbits(x) { var r = 1, t; if((t=x>>>16) != 0) { x = t; r += 16; } if((t=x>>8) != 0) { x = t; r += 8; } if((t=x>>4) != 0) { x = t; r += 4; } if((t=x>>2) != 0) { x = t; r += 2; } if((t=x>>1) != 0) { x = t; r += 1; } return r; } // (public) return the number of bits in "this" function bnBitLength() { if(this.t <= 0) return 0; return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); } // (protected) r = this << n*DB function bnpDLShiftTo(n,r) { var i; for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; for(i = n-1; i >= 0; --i) r[i] = 0; r.t = this.t+n; r.s = this.s; } // (protected) r = this >> n*DB function bnpDRShiftTo(n,r) { for(var i = n; i < this.t; ++i) r[i-n] = this[i]; r.t = Math.max(this.t-n,0); r.s = this.s; } // (protected) r = this << n function bnpLShiftTo(n,r) { var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<<cbs)-1; var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; for(i = this.t-1; i >= 0; --i) { r[i+ds+1] = (this[i]>>cbs)|c; c = (this[i]&bm)<<bs; } for(i = ds-1; i >= 0; --i) r[i] = 0; r[ds] = c; r.t = this.t+ds+1; r.s = this.s; r.clamp(); } // (protected) r = this >> n function bnpRShiftTo(n,r) { r.s = this.s; var ds = Math.floor(n/this.DB); if(ds >= this.t) { r.t = 0; return; } var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<<bs)-1; r[0] = this[ds]>>bs; for(var i = ds+1; i < this.t; ++i) { r[i-ds-1] |= (this[i]&bm)<<cbs; r[i-ds] = this[i]>>bs; } if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; r.t = this.t-ds; r.clamp(); } // (protected) r = this - a function bnpSubTo(a,r) { var i = 0, c = 0, m = Math.min(a.t,this.t); while(i < m) { c += this[i]-a[i]; r[i++] = c&this.DM; c >>= this.DB; } if(a.t < this.t) { c -= a.s; while(i < this.t) { c += this[i]; r[i++] = c&this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while(i < a.t) { c -= a[i]; r[i++] = c&this.DM; c >>= this.DB; } c -= a.s; } r.s = (c<0)?-1:0; if(c < -1) r[i++] = this.DV+c; else if(c > 0) r[i++] = c; r.t = i; r.clamp(); } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a,r) { var x = this.abs(), y = a.abs(); var i = x.t; r.t = i+y.t; while(--i >= 0) r[i] = 0; for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); r.s = 0; r.clamp(); if(this.s != a.s) BigInteger.ZERO.subTo(r,r); } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { var x = this.abs(); var i = r.t = 2*x.t; while(--i >= 0) r[i] = 0; for(i = 0; i < x.t-1; ++i) { var c = x.am(i,x[i],r,2*i,0,1); if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { r[i+x.t] -= x.DV; r[i+x.t+1] = 1; } } if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); r.s = 0; r.clamp(); } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m,q,r) { var pm = m.abs(); if(pm.t <= 0) return; var pt = this.abs(); if(pt.t < pm.t) { if(q != null) q.fromInt(0); if(r != null) this.copyTo(r); return; } if(r == null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys-1]; if(y0 == 0) return; var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; var i = r.t, j = i-ys, t = (q==null)?nbi():q; y.dlShiftTo(j,t); if(r.compareTo(t) >= 0) { r[r.t++] = 1; r.subTo(t,r); } BigInteger.ONE.dlShiftTo(ys,t); t.subTo(y,y); // "negative" y so we can replace sub with am later while(y.t < ys) y[y.t++] = 0; while(--j >= 0) { // Estimate quotient digit var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out y.dlShiftTo(j,t); r.subTo(t,r); while(r[i] < --qd) r.subTo(t,r); } } if(q != null) { r.drShiftTo(ys,q); if(ts != ms) BigInteger.ZERO.subTo(q,q); } r.t = ys; r.clamp(); if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder if(ts < 0) BigInteger.ZERO.subTo(r,r); } // (public) this mod a function bnMod(a) { var r = nbi(); this.abs().divRemTo(a,null,r); if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); return r; } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m; } function cConvert(x) { if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x; } function cRevert(x) { return x; } function cReduce(x) { x.divRemTo(this.m,null,x); } function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } Classic.prototype.convert = cConvert; Classic.prototype.revert = cRevert; Classic.prototype.reduce = cReduce; Classic.prototype.mulTo = cMulTo; Classic.prototype.sqrTo = cSqrTo; // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { if(this.t < 1) return 0; var x = this[0]; if((x&1) == 0) return 0; var y = x&3; // y == 1/x mod 2^2 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y>0)?this.DV-y:-y; } // Montgomery reduction function Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp&0x7fff; this.mph = this.mp>>15; this.um = (1<<(m.DB-15))-1; this.mt2 = 2*m.t; } // xR mod m function montConvert(x) { var r = nbi(); x.abs().dlShiftTo(this.m.t,r); r.divRemTo(this.m,null,r); if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); return r; } // x/R mod m function montRevert(x) { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } // x = x/R mod m (HAC 14.32) function montReduce(x) { while(x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0; for(var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i]&0x7fff; var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; // use am to combine the multiply-shift-add into one call j = i+this.m.t; x[j] += this.m.am(0,u0,x,i,0,this.m.t); // propagate carry while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t,x); if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); } // r = "x^2/R mod m"; x != r function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } // r = "xy/R mod m"; x,y != r function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } Montgomery.prototype.convert = montConvert; Montgomery.prototype.revert = montRevert; Montgomery.prototype.reduce = montReduce; Montgomery.prototype.mulTo = montMulTo; Montgomery.prototype.sqrTo = montSqrTo; // (protected) true iff this is even function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e,z) { if(e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; g.copyTo(r); while(--i >= 0) { z.sqrTo(r,r2); if((e&(1<<i)) > 0) z.mulTo(r2,g,r); else { var t = r; r = r2; r2 = t; } } return z.revert(r); } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e,m) { var z; if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e,z); } // protected BigInteger.prototype.copyTo = bnpCopyTo; BigInteger.prototype.fromInt = bnpFromInt; BigInteger.prototype.fromString = bnpFromString; BigInteger.prototype.clamp = bnpClamp; BigInteger.prototype.dlShiftTo = bnpDLShiftTo; BigInteger.prototype.drShiftTo = bnpDRShiftTo; BigInteger.prototype.lShiftTo = bnpLShiftTo; BigInteger.prototype.rShiftTo = bnpRShiftTo; BigInteger.prototype.subTo = bnpSubTo; BigInteger.prototype.multiplyTo = bnpMultiplyTo; BigInteger.prototype.squareTo = bnpSquareTo; BigInteger.prototype.divRemTo = bnpDivRemTo; BigInteger.prototype.invDigit = bnpInvDigit; BigInteger.prototype.isEven = bnpIsEven; BigInteger.prototype.exp = bnpExp; // public BigInteger.prototype.toString = bnToString; BigInteger.prototype.negate = bnNegate; BigInteger.prototype.abs = bnAbs; BigInteger.prototype.compareTo = bnCompareTo; BigInteger.prototype.bitLength = bnBitLength; BigInteger.prototype.mod = bnMod; BigInteger.prototype.modPowInt = bnModPowInt; // "constants" BigInteger.ZERO = nbv(0); BigInteger.ONE = nbv(1); // prng4.js - uses Arcfour as a PRNG function Arcfour() { this.i = 0; this.j = 0; this.S = new Array(); } // Initialize arcfour context from key, an array of ints, each from [0..255] function ARC4init(key) { var i, j, t; for(i = 0; i < 256; ++i) this.S[i] = i; j = 0; for(i = 0; i < 256; ++i) { j = (j + this.S[i] + key[i % key.length]) & 255; t = this.S[i]; this.S[i] = this.S[j]; this.S[j] = t; } this.i = 0; this.j = 0; } function ARC4next() { var t; this.i = (this.i + 1) & 255; this.j = (this.j + this.S[this.i]) & 255; t = this.S[this.i]; this.S[this.i] = this.S[this.j]; this.S[this.j] = t; return this.S[(t + this.S[this.i]) & 255]; } Arcfour.prototype.init = ARC4init; Arcfour.prototype.next = ARC4next; // Plug in your RNG constructor here function prng_newstate() { return new Arcfour(); } // Pool size must be a multiple of 4 and greater than 32. // An array of bytes the size of the pool will be passed to init() var rng_psize = 256; // Random number generator - requires a PRNG backend, e.g. prng4.js // For best results, put code like // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> // in your main HTML document. var rng_state; var rng_pool; var rng_pptr; // Mix in a 32-bit integer into the pool function rng_seed_int(x) { rng_pool[rng_pptr++] ^= x & 255; rng_pool[rng_pptr++] ^= (x >> 8) & 255; rng_pool[rng_pptr++] ^= (x >> 16) & 255; rng_pool[rng_pptr++] ^= (x >> 24) & 255; if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; } // Mix in the current time (w/milliseconds) into the pool function rng_seed_time() { rng_seed_int(new Date().getTime()); } // Initialize the pool with junk if needed. if(rng_pool == null) { rng_pool = new Array(); rng_pptr = 0; var t; if(window.crypto && window.crypto.getRandomValues) { // Use webcrypto if available var ua = new Uint8Array(32); window.crypto.getRandomValues(ua); for(t = 0; t < 32; ++t) rng_pool[rng_pptr++] = ua[t]; } if(navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto) { // Extract entropy (256 bits) from NS4 RNG if available var z = window.crypto.random(32); for(t = 0; t < z.length; ++t) rng_pool[rng_pptr++] = z.charCodeAt(t) & 255; } while(rng_pptr < rng_psize) { // extract some randomness from Math.random() t = Math.floor(65536 * Math.random()); rng_pool[rng_pptr++] = t >>> 8; rng_pool[rng_pptr++] = t & 255; } rng_pptr = 0; rng_seed_time(); //rng_seed_int(window.screenX); //rng_seed_int(window.screenY); } function rng_get_byte() { if(rng_state == null) { rng_seed_time(); rng_state = prng_newstate(); rng_state.init(rng_pool); for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) rng_pool[rng_pptr] = 0; rng_pptr = 0; //rng_pool = null; } // TODO: allow reseeding after first request return rng_state.next(); } function rng_get_bytes(ba) { var i; for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); } function SecureRandom() {} SecureRandom.prototype.nextBytes = rng_get_bytes; // Depends on jsbn.js and rng.js // Version 1.1: support utf-8 encoding in pkcs1pad2 // convert a (hex) string to a bignum object function parseBigInt(str,r) { return new BigInteger(str,r); } function linebrk(s,n) { var ret = ""; var i = 0; while(i + n < s.length) { ret += s.substring(i,i+n) + "\n"; i += n; } return ret + s.substring(i,s.length); } function byte2Hex(b) { if(b < 0x10) return "0" + b.toString(16); else return b.toString(16); } // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint function pkcs1pad2(s,n) { if(n < s.length + 11) { // TODO: fix for utf-8 alert("Message too long for RSA"); return null; } var ba = new Array(); var i = s.length - 1; while(i >= 0 && n > 0) { var c = s.charCodeAt(i--); if(c < 128) { // encode using utf-8 ba[--n] = c; } else if((c > 127) && (c < 2048)) { ba[--n] = (c & 63) | 128; ba[--n] = (c >> 6) | 192; } else { ba[--n] = (c & 63) | 128; ba[--n] = ((c >> 6) & 63) | 128; ba[--n] = (c >> 12) | 224; } } ba[--n] = 0; var rng = new SecureRandom(); var x = new Array(); while(n > 2) { // random non-zero pad x[0] = 0; while(x[0] == 0) rng.nextBytes(x); ba[--n] = x[0]; } ba[--n] = 2; ba[--n] = 0; return new BigInteger(ba); } // "empty" RSA key constructor function RSAKey() { this.n = null; this.e = 0; this.d = null; this.p = null; this.q = null; this.dmp1 = null; this.dmq1 = null; this.coeff = null; } // Set the public key fields N and e from hex strings function RSASetPublic(N,E) { if(N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N,16); this.e = parseInt(E,16); } else alert("Invalid RSA public key"); } // Perform raw public operation on "x": return x^e (mod n) function RSADoPublic(x) { return x.modPowInt(this.e, this.n); } // Return the PKCS#1 RSA encryption of "text" as an even-length hex string function RSAEncrypt(text) { var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); if(m == null) return null; var c = this.doPublic(m); if(c == null) return null; var h = c.toString(16); if((h.length & 1) == 0) return h; else return "0" + h; } // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string //function RSAEncryptB64(text) { // var h = this.encrypt(text); // if(h) return hex2b64(h); else return null; //} // protected RSAKey.prototype.doPublic = RSADoPublic; // public RSAKey.prototype.setPublic = RSASetPublic; RSAKey.prototype.encrypt = RSAEncrypt; //RSAKey.prototype.encrypt_b64 = RSAEncryptB64; var rsa = new RSAKey(); rsa.setPublic("B771E71D7E5453F2701AF46E7CF56D25A15A592C1811B43E6DDAB52FABAF4E95B17603A45BAD5BB4589013A71BB5CE2F9AE24B7D12E4493C5A72C5A5F51D1A25A1D89A3E4840EB879A59F91E471F3A5C9AE3CC8F0BECB71E1C4AFF5C6143F0570C330B16435A6635D2054C98ED47B5A1271C463962337167F6269520465258FB", "10001"); console.log(rsa.encrypt("123456"));
相关推荐
在JavaScript中,没有内置的RSA加密库,但可以使用第三方库,如`node-rsa`或`crypto-js`。这些库提供了类似的公钥/私钥生成和加密/解密功能。需要注意的是,由于JavaScript环境的安全限制,浏览器端可能无法直接处理...
使用js进行RSA加密算法进行加密,源码免费下载
本rsa算法是使用Java与javascript加密解密范例代码,该资料从互联网收集,加上了自己的使用体会,如果对你有帮助那是万幸! js加密部分
纯js前端实现rsa加密
JS用RSA加密解密技术对密码进行加密解密,再在后台使用对应公钥私钥参数进行解密,提升数据安全 jsencrypt.min.js
//加密 var encrypt = new JSEncrypt(); encrypt.setPublicKey(PUBLIC_KEY); var encrypted = encrypt.encryptLong("results"); console.log('加密后数据:%o', encrypted); //解密 var decrypt = new JSEncrypt(); ...
js rsa加密 分段 使用时encrypt 方法名别忘了变为encryptLong
在“可以互操作的Java和Javascript RSA加密解密程序”中,我们看到这种技术被巧妙地应用于Java和JavaScript两个不同的编程环境中,实现跨平台的加密解密互操作。 首先,我们需要理解RSA算法的基本原理。RSA基于大数...
在JavaScript环境中,`security.js`可能是一个实现了RSA加密解密功能的库。使用此类库可以方便地在前端或后端进行数据的安全处理。"init的值尽量不要太大"可能是指初始化参数,这通常涉及到密钥长度或者加密过程中的...
POSTMAN RSA加密是一种在Postman测试工具中使用RSA加密技术的方法,主要涉及到JavaScript库Forge.js。Forge.js是一个强大的开源加密库,提供了多种加密算法,包括RSA(Rivest-Shamir-Adleman),这对于安全地传输...
经过本人修改,简化并完善了别人的代码,使其更加的容易理解和学习! 此为一个完整的项目,...功能:服务端随机生成密钥,JS用公钥加密,服务端用私钥解密。用到的JS加密文件是从官网下载的最新版,速度快,稳定性好!
在JS端,可以使用像是`crypto-js`或者`node-rsa`这样的库来实现RSA加密。这些库提供了生成密钥对、加密和解密的方法。而在Java端,`Java Cryptography Extension (JCE)`是标准的加密库,可以处理RSA的操作。例如,...
总结,JavaScript与Java之间的RSA加密解密流程主要包括:前端使用JavaScript的`crypto-js`库加载公钥并加密数据,然后将加密后的数据发送给服务器;服务器端使用`Bouncy Castle`库加载私钥并解密数据。这种机制确保...
RSA加密是一种非对称加密算法,它在网络安全和数据保护领域广泛应用。该算法基于大整数因子分解...总的来说,这些JavaScript库为开发者提供了在Web环境中实现RSA加密解密的工具,对于网络数据的安全传输具有重要意义。
在提供的压缩包中,有两个Java文件(RSACrypt.java和RSACryptTest.java)和一个JavaScript文件(jsencrypt.min.js),这表明代码实现了RSA加密解密的Java版本和JavaScript版本,可以在客户端和服务端之间进行安全的...
前端部分,JavaScript通常用于构建用户交互界面,而jsencrypt.js是一个流行的JavaScript库,它提供了RSA加密的便捷实现。使用这个插件,开发者可以轻松地将用户的敏感信息,如密码或个人信息,加密成无法读取的形式...
在JavaScript端,可以使用`crypto.subtle` API或者第三方库如`crypto-js`来处理RSA加密。JavaScript代码示例如下: ```javascript // 假设已获取到公钥字符串 var publicKeyXml = '...'; // 将公钥转换为PEM格式 ...
在JavaScript环境中实现RSA加密,通常需要借助一些库,如OpenSSL的jsbn库或crypto-js等。这些库提供了处理大数运算和RSA加密的函数,能够支持PKCS#1 v1.5填充。实现过程中,首先要生成一对RSA密钥,包括一个公钥和一...
在JavaScript中,你可以使用`crypto-js`库来实现RSA加密。这个库提供了各种加密算法,包括RSA。首先,你需要生成RSA的公钥和私钥对,这通常通过Java或Python等支持RSA密钥生成的语言完成。生成的公钥和私钥保存为...
在JavaScript环境中,由于安全性需求和跨域通信的限制,RSA加密库被广泛应用于数据的保护,例如在Web应用中进行安全的数据传输。本篇文章将详细介绍RSA在JavaScript中的实现,并结合给定的资源链接,探讨如何在iOS...