在上一章,我们跟踪了Producer源码的整体流程和一些细节,本章我们将重点跟踪Consumer的源码细节。
Consumer的配置文件如下:
Kafka Consumer配置: group.id: 指定consumer所属的consumer group consumer.id: 如果不指定会自动生成 socket.timeout.ms: 网络请求的超时设定 socket.receive.buffer.bytes: Socket的接收缓存大小 fetch.message.max.bytes: 试图获取的消息大小之和(bytes) num.consumer.fetchers: 该消费去获取data的总线程数 auto.commit.enable: 如果是true, 定期向zk中更新Consumer已经获取的last message offset(所获取的最后一个batch的first message offset) auto.commit.interval.ms: Consumer向ZK中更新offset的时间间隔 queued.max.message.chunks: 默认为2 rebalance.max.retries: 在rebalance时retry的最大次数,默认为4 fetch.min.bytes: 对于一个fetch request, Broker Server应该返回的最小数据大小,达不到该值request会被block, 默认是1字节。 fetch.wait.max.ms: Server在回答一个fetch request之前能block的最大时间(可能的block原因是返回数据大小还没达到fetch.min.bytes规定); rebalance.backoff.ms: 当rebalance发生时,两个相邻retry操作之间需要间隔的时间。 refresh.leader.backoff.ms: 如果一个Consumer发现一个partition暂时没有leader, 那么Consumer会继续等待的最大时间窗口(这段时间内会refresh partition leader); auto.offset.reset: 当发现offset超出合理范围(out of range)时,应该设成的大小(默认是设成offsetRequest中指定的值): smallest: 自动把该consumer的offset设为最小的offset; largest: 自动把该consumer的offset设为最大的offset; anything else: throw exception to the consumer; consumer.timeout.ms: 如果在该规定时间内没有消息可供消费,则向Consumer抛出timeout exception; 该参数默认为-1, 即不指定Consumer timeout; client.id: 区分不同consumer的ID,默认是group.id
先从一个消费者的demo开始:
public class ConsumerDemo { private final ConsumerConnector consumer; private final String topic; private ExecutorService executor; public ConsumerDemo(String a_zookeeper, String a_groupId, String a_topic) { consumer = Consumer.createJavaConsumerConnector(createConsumerConfig(a_zookeeper,a_groupId)); this.topic = a_topic; } public void shutdown() { if (consumer != null) consumer.shutdown(); if (executor != null) executor.shutdown(); } public void run(int numThreads) { Map<String, Integer> topicCountMap = new HashMap<String, Integer>(); topicCountMap.put(topic, new Integer(numThreads)); Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer .createMessageStreams(topicCountMap); List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic); // now launch all the threads executor = Executors.newFixedThreadPool(numThreads); // now create an object to consume the messages // int threadNumber = 0; for (final KafkaStream stream : streams) { executor.submit(new ConsumerMsgTask(stream, threadNumber)); threadNumber++; } } private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) { Properties props = new Properties(); props.put("zookeeper.connect", a_zookeeper); props.put("group.id", a_groupId); props.put("zookeeper.session.timeout.ms", "400"); props.put("zookeeper.sync.time.ms", "200"); props.put("auto.commit.interval.ms", "1000"); return new ConsumerConfig(props); } public static void main(String[] arg) { String[] args = { "172.168.63.221:2188", "group-1", "page_visits", "12" }; String zooKeeper = args[0]; String groupId = args[1]; String topic = args[2]; int threads = Integer.parseInt(args[3]); ConsumerDemo demo = new ConsumerDemo(zooKeeper, groupId, topic); demo.run(threads); try { Thread.sleep(10000); } catch (InterruptedException ie) { } demo.shutdown(); } }
上面的例子是用java编写的消费者的例子,也是官网提供的例子,那么我们的源码分析就从下面这一行开始:
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer .createMessageStreams(topicCountMap);
从createMessagesStreams方法进入后直接到kafka.javaapi.consumer.ZookeeperConsumerConnector类。
private[kafka] class ZookeeperConsumerConnector(val config: ConsumerConfig, val enableFetcher: Boolean) // for testing only extends ConsumerConnector { //初始化伴生对象 private val underlying = new kafka.consumer.ZookeeperConsumerConnector(config, enableFetcher) private val messageStreamCreated = new AtomicBoolean(false) def this(config: ConsumerConfig) = this(config, true) // for java client def createMessageStreams[K,V]( topicCountMap: java.util.Map[String,java.lang.Integer], keyDecoder: Decoder[K], valueDecoder: Decoder[V]) : java.util.Map[String,java.util.List[KafkaStream[K,V]]] = { if (messageStreamCreated.getAndSet(true)) throw new MessageStreamsExistException(this.getClass.getSimpleName + " can create message streams at most once",null) val scalaTopicCountMap: Map[String, Int] = { import JavaConversions._ Map.empty[String, Int] ++ (topicCountMap.asInstanceOf[java.util.Map[String, Int]]: mutable.Map[String, Int]) } val scalaReturn = underlying.consume(scalaTopicCountMap, keyDecoder, valueDecoder) val ret = new java.util.HashMap[String,java.util.List[KafkaStream[K,V]]] for ((topic, streams) <- scalaReturn) { var javaStreamList = new java.util.ArrayList[KafkaStream[K,V]] for (stream <- streams) javaStreamList.add(stream) ret.put(topic, javaStreamList) } ret }
这个类是整体Consumer的核心类,首先要初始化ZookeeperConsumerConnector的伴生对象(关于伴生对象请大家查看scala语法,实际就是一个静态对象,每一个class都要有一个伴生对象,像我们的静态方法都要定义在这里面),在createMessageStreams中,topicCountMap主要是消费线程数,这个参数和partition的数量有直接有关系。
通过val scalaReturn = underlying.consume(scalaTopicCountMap, keyDecoder, valueDecoder)这行代码,将进入到伴生对象中,直接可以跟踪消费的内部逻辑。
def consume[K, V](topicCountMap: scala.collection.Map[String,Int], keyDecoder: Decoder[K], valueDecoder: Decoder[V]) : Map[String,List[KafkaStream[K,V]]] = { debug("entering consume ") if (topicCountMap == null) throw new RuntimeException("topicCountMap is null") //封装成一个TopicCount对象,参数分别是消费者的ids字符串和线程数map val topicCount = TopicCount.constructTopicCount(consumerIdString, topicCountMap) //解析出每个topic对应多少个消费者线程,topicThreadsIds是一个map结构 val topicThreadIds = topicCount.getConsumerThreadIdsPerTopic //针对每一个消费者线程创建一个BlockingQueue队列,队列中存储的是FetchedDataChunk数据块,每一个数据块中包括多条记录。 val queuesAndStreams = topicThreadIds.values.map(threadIdSet => threadIdSet.map(_ => { val queue = new LinkedBlockingQueue[FetchedDataChunk](config.queuedMaxMessages) val stream = new KafkaStream[K,V]( queue, config.consumerTimeoutMs, keyDecoder, valueDecoder, config.clientId) (queue, stream) }) ).flatten.toList val dirs = new ZKGroupDirs(config.groupId) //将consumer的topic信息注册到zookeeper中,格式如下: //Consumer id registry:/consumers/[group_id]/ids[consumer_id] -> topic1,...topicN registerConsumerInZK(dirs, consumerIdString, topicCount) reinitializeConsumer(topicCount, queuesAndStreams) loadBalancerListener.kafkaMessageAndMetadataStreams.asInstanceOf[Map[String, List[KafkaStream[K,V]]]] }
结合代码中的注释请看下面的图:
说明:
创建consumer thread
consumer thread数量与BlockingQueue一一对应。
a.当consumer thread count=1时
此时有一个blockingQueue1,三个fetch thread线程,该topic分布在几个node上就有几个fetch thread,每个fetch thread会于kafka broker建立一个连接。3个fetch thread线程去拉取消息数据,最终放到blockingQueue1中,等待consumer thread来消费。
接着看上面代码中的这个方法:
registerConsumerInZK(dirs, consumerIdString, topicCount)
这个方法是将consumer的topic信息注册到zookeeper中,格式如下:
Consumer id registry:
/consumers/[group_id]/ids[consumer_id] -> topic1,...topicN
进入重新初始化Consumer方法:
registerConsumerInZK(dirs, consumerIdString, topicCount)
这个方法会建立一系列的侦听器:
1、负载平衡器侦听器:ZKRebalancerListener。
2、会话超时侦听器:ZKSessionExpireListener。
3、监控topic和partition变化侦听器:ZKTopicPartitionChangeListener。
客户端启动后会在消费者注册目录上添加子节点变化的监听ZKRebalancerListener,ZKRebalancerListener实例会在内部创建一个线程,这个线程定时检查监听的事件有没有执行(消费者发生变化),如果没有变化则wait1秒钟,当发生了变化就调用 syncedRebalance 方法,去rebalance消费者,代码如下:
private val watcherExecutorThread = new Thread(consumerIdString + "_watcher_executor") { override def run() { info("starting watcher executor thread for consumer " + consumerIdString) var doRebalance = false while (!isShuttingDown.get) { try { lock.lock() try { if (!isWatcherTriggered) cond.await(1000, TimeUnit.MILLISECONDS) // wake up periodically so that it can check the shutdown flag } finally { doRebalance = isWatcherTriggered isWatcherTriggered = false lock.unlock() } if (doRebalance) syncedRebalance } catch { case t: Throwable => error("error during syncedRebalance", t) } } info("stopping watcher executor thread for consumer " + consumerIdString) } } watcherExecutorThread.start() @throws(classOf[Exception]) def handleChildChange(parentPath : String, curChilds : java.util.List[String]) { rebalanceEventTriggered() } def rebalanceEventTriggered() { inLock(lock) { isWatcherTriggered = true cond.signalAll() } }
syncedRebalance方法在内部会调用def rebalance(cluster: Cluster): Boolean方法,去真正执行操作。
在这个方法中,获取者必须停止,避免重复的数据,重新平衡尝试失败,被释放的分区被另一个consumers拥有。如果我们不首先停止获取数据,消费者将继续并发的返回数据,所以要先停止之前的获取者,再更新当前的消费者信息,重新更新启动获取者。代码如下:
private def rebalance(cluster: Cluster): Boolean = { val myTopicThreadIdsMap = TopicCount.constructTopicCount( group, consumerIdString, zkClient, config.excludeInternalTopics).getConsumerThreadIdsPerTopic val brokers = getAllBrokersInCluster(zkClient) if (brokers.size == 0) { // This can happen in a rare case when there are no brokers available in the cluster when the consumer is started. // We log an warning and register for child changes on brokers/id so that rebalance can be triggered when the brokers // are up. warn("no brokers found when trying to rebalance.") zkClient.subscribeChildChanges(ZkUtils.BrokerIdsPath, loadBalancerListener) true } else { /** * fetchers must be stopped to avoid data duplication, since if the current * rebalancing attempt fails, the partitions that are released could be owned by another consumer. * But if we don't stop the fetchers first, this consumer would continue returning data for released * partitions in parallel. So, not stopping the fetchers leads to duplicate data. */ //在这行要先停止之前的获取者线程,再更新启动当前最新消费者的。 closeFetchers(cluster, kafkaMessageAndMetadataStreams, myTopicThreadIdsMap) releasePartitionOwnership(topicRegistry) val assignmentContext = new AssignmentContext(group, consumerIdString, config.excludeInternalTopics, zkClient) val partitionOwnershipDecision = partitionAssignor.assign(assignmentContext) val currentTopicRegistry = new Pool[String, Pool[Int, PartitionTopicInfo]]( valueFactory = Some((topic: String) => new Pool[Int, PartitionTopicInfo])) // fetch current offsets for all topic-partitions val topicPartitions = partitionOwnershipDecision.keySet.toSeq val offsetFetchResponseOpt = fetchOffsets(topicPartitions) if (isShuttingDown.get || !offsetFetchResponseOpt.isDefined) false else { val offsetFetchResponse = offsetFetchResponseOpt.get topicPartitions.foreach(topicAndPartition => { val (topic, partition) = topicAndPartition.asTuple val offset = offsetFetchResponse.requestInfo(topicAndPartition).offset val threadId = partitionOwnershipDecision(topicAndPartition) addPartitionTopicInfo(currentTopicRegistry, partition, topic, offset, threadId) }) /** * move the partition ownership here, since that can be used to indicate a truly successful rebalancing attempt * A rebalancing attempt is completed successfully only after the fetchers have been started correctly */ if(reflectPartitionOwnershipDecision(partitionOwnershipDecision)) { allTopicsOwnedPartitionsCount = partitionOwnershipDecision.size partitionOwnershipDecision.view.groupBy { case(topicPartition, consumerThreadId) => topicPartition.topic } .foreach { case (topic, partitionThreadPairs) => newGauge("OwnedPartitionsCount", new Gauge[Int] { def value() = partitionThreadPairs.size }, ownedPartitionsCountMetricTags(topic)) } topicRegistry = currentTopicRegistry updateFetcher(cluster) true } else { false } } } }
上面代码的流程图如下:
我们要了解Rebalance如何动作,看下updateFetcher怎么实现的。
private def updateFetcher(cluster: Cluster) { // 遍历topicRegistry中保存的当前消费者的分区信息,修改Fetcher的partitions信息 var allPartitionInfos : List[PartitionTopicInfo] = Nil for (partitionInfos <- topicRegistry.values) for (partition <- partitionInfos.values) allPartitionInfos ::= partition info("Consumer " + consumerIdString + " selected partitions : " + allPartitionInfos.sortWith((s,t) => s.partition < t.partition).map(_.toString).mkString(",")) fetcher match { case Some(f) => // 调用fetcher的startConnections方法,初始化Fetcher并启动它 f.startConnections(allPartitionInfos, cluster) case None => } }
注意下面这行代码:
f.startConnections(allPartitionInfos, cluster)在这个方法里面其实是启动了一个LeaderFinderThread线程的,这个线程主要是通过ClientUtils的io,获取最新的topic元数据,将topic:partitionLeaderId和brokerId对应起来,封装成Map结构。
for ((brokerAndFetcherId, partitionAndOffsets) <- partitionsPerFetcher) { var fetcherThread: AbstractFetcherThread = null fetcherThreadMap.get(brokerAndFetcherId) match { case Some(f) => fetcherThread = f case None => fetcherThread = createFetcherThread(brokerAndFetcherId.fetcherId, brokerAndFetcherId.broker) fetcherThreadMap.put(brokerAndFetcherId, fetcherThread) fetcherThread.start } fetcherThreadMap(brokerAndFetcherId).addPartitions(partitionAndOffsets.map { case (topicAndPartition, brokerAndInitOffset) => topicAndPartition -> brokerAndInitOffset.initOffset }) }对每个broker创建一个FetcherRunnable线程,插入到fetcherThreadMap中并启动它。这个线程负责从服务器上不断获取数据,把数据插入内部阻塞队列的操作 。
下面看一下ConsumerIterator的实现,客户端用它不断的从分区信息的内部队列中取数据。它实现了IteratorTemplate的接口,它的内部保存一个Iterator的属性current,每次调用makeNext时会检查它,如果有则从中取否则从队列中取。下面给出代码
protected def makeNext(): MessageAndMetadata[T] = { var currentDataChunk: FetchedDataChunk = null // if we don't have an iterator, get one,从内部变量中取数据 var localCurrent = current.get() if(localCurrent == null || !localCurrent.hasNext) { // 内部变量中取不到值,检查timeout的值 if (consumerTimeoutMs < 0) currentDataChunk = channel.take // 是负数(-1),则表示永不过期,如果接下来无新数据可取,客户端线程会在channel.take阻塞住 else { // 设置了过期时间,在没有新数据可用时,pool会在相应的时间返回,返回值为空,则说明没有取到新数据,抛出timeout的异常 currentDataChunk = channel.poll(consumerTimeoutMs, TimeUnit.MILLISECONDS) if (currentDataChunk == null) { // reset state to make the iterator re-iterable resetState() throw new ConsumerTimeoutException } } // kafka把shutdown的命令也做为一个datachunk放到队列中,用这种方法来保证消息的顺序性 if(currentDataChunk eq ZookeeperConsumerConnector.shutdownCommand) { debug("Received the shutdown command") channel.offer(currentDataChunk) return allDone } else { currentTopicInfo = currentDataChunk.topicInfo if (currentTopicInfo.getConsumeOffset != currentDataChunk.fetchOffset) { error("consumed offset: %d doesn't match fetch offset: %d for %s;\n Consumer may lose data" .format(currentTopicInfo.getConsumeOffset, currentDataChunk.fetchOffset, currentTopicInfo)) currentTopicInfo.resetConsumeOffset(currentDataChunk.fetchOffset) } // 把取出chunk中的消息转化为iterator localCurrent = if (enableShallowIterator) currentDataChunk.messages.shallowIterator else currentDataChunk.messages.iterator // 使用这个新的iterator初始化current,下次可直接从current中取数据 current.set(localCurrent) } } // 取出下一条数据,并用下一条数据的offset值设置consumedOffset val item = localCurrent.next() consumedOffset = item.offset // 解码消息,封装消息和它的topic信息到MessageAndMetadata对象,返回 new MessageAndMetadata(decoder.toEvent(item.message), currentTopicInfo.topic) }下面看一下它的next方法的逻辑:
相关推荐
7. **连接器(Connectors)和流处理(Kafka Streams)**:Kafka Connect允许用户方便地集成其他系统,如数据库,而Kafka Streams则提供了一种在Kafka之上进行流处理的API,使得实时分析和复杂事件处理变得简单。...
kafka源码分析, Introduction kafka-Intro kafka-Unix kafka-Producer kafka-Producer-Scala kafka-SocketServer kafka-LogAppend kafka-ISR kafka-Consumer-init-Scala
基于Kafka的管理系统源码 基于Kafka的管理系统源码 基于Kafka的管理系统源码 基于Kafka的管理系统源码 基于Kafka的管理系统源码 基于Kafka的管理系统源码 基于Kafka的管理系统源码 基于Kafka的管理系统源码 ...
6. `KafkaConsumer`:消费者的主要类,`poll`方法定期拉取新消息,`seek`方法可以定位到特定offset。 四、Kafka的特性 1. 高吞吐:Kafka通过批量发送、零拷贝和高效的数据存储方式实现高吞吐。 2. 可靠性:消息...
Kafka技术内幕:图文详解Kafka源码设计与实现 PDF 下载 Kafka技术内幕:图文详解Kafka源码设计与实现 PDF 下载
#### 三、Kafka源码分析 ##### 3.1 生产者发送流程 1. **消息序列化**:生产者在发送消息之前,首先需要将消息对象序列化为字节数组。 2. **消息分发**:根据用户指定的分区策略(如轮询、按key哈希等),将消息...
apache kafka源码剖析高清 带索引书签目录_徐郡明(著) 电子工业出版社,分为part1和part2,一起下载解压
《Kafka源码解析及实战》是一本专为深度学习Apache Kafka的读者设计的教材,旨在帮助读者深入了解Kafka的工作原理及其内部机制。通过源码级别的解析,读者可以更好地掌握Kafka在分布式消息系统中的核心功能和设计...
### Kafka源码解析新手版本(修正版)知识点详解 #### 一、Kafka诞生背景及其在LinkedIn的应用 **1.1 Apache Kafka项目简介** - **诞生背景:** Apache Kafka最初由LinkedIn开发,随后于2011年初开源,并在2012年...
**Kafka 源码分析概述** Kafka 是一个分布式流处理平台,由 LinkedIn 开发并贡献给 Apache 软件基金会。它被设计为高吞吐量、低延迟的消息传递系统,支持实时数据流处理。Kafka 主要用于构建实时数据管道和流应用,...
Kafka源码解析与实战.zip
在本文中,我们将深入探讨如何使用C++库RdKafka中的`KafkaConsumer`类来消费Apache Kafka消息。RdKafka是一个高效的C/C++ Kafka客户端,它提供了生产者和消费者API,使得与Kafka集群进行交互变得更加简单。在这个...
标题中提到的“Kafka源码解析与实战”指向了关于Apache Kafka这个开源流处理平台的深入分析和应用实践。Apache Kafka是一个分布式流处理平台,最初是由LinkedIn公司开发,并于2011年开源。它主要用于构建实时数据...
apache kafka源码剖析高清 带索引书签目录_徐郡明(著) 电子工业出版社
以下是对Kafka源码设计与实现的一些关键知识点的详细说明: 1. **Kafka架构**:Kafka是一个分布式的消息中间件,主要由Producers(生产者)、Brokers(代理服务器)、Consumers(消费者)和Topics(主题)组成。...
Kafka自LinkedIn开源以来就以高性能、高吞吐量、分布式的特性著称,本书以0.10版本的源码为基础,深入分析了Kafka的设计与实现,包括生产者和消费者的消息处理流程,新旧消费者不同的设计方式,存储层的实现,协调者...
apache kafka技术内幕 和 apacke kafka源码分析2本PDF 电子书 网盘下载
这本书详细介绍了Kafka的核心概念、工作原理以及源码分析,旨在帮助读者理解并掌握这个分布式流处理平台。 Kafka是一个高吞吐量、可扩展的开源消息系统,最初由LinkedIn开发,后来成为Apache软件基金会的顶级项目。...
Apache Kafka源码剖析 PDF较大,分5份上传!一起解压即可。
1. **创建Consumer实例**:首先,我们需要配置一个`Properties`对象,设置必要的参数如bootstrap servers、group id等,然后使用`KafkaConsumer`类的构造函数创建消费者实例。 2. **订阅主题**:消费者通过调用`...