Pig里面内置大量的工具函数,也开放了大量的接口,来给我们开发者使用,通过UDF,我们可以非常方便的完成某些Pig不直接支持或没有的的功能,比如散仙前面几篇文章写的将pig分析完的结果,存储到各种各样的介质里面,而不仅仅局限于HDFS,当然,我们也可以在都存。
那么如何实现自己的存储UDF呢? 提到这里,我们不得不说下pig里面的load和store函数,load函数是从某个数据源,加载数据,一般都是从HDFS上加载,而store函数则是将分析完的结果,存储到HDFS用的,所以,我们只需继承重写store的功能函数StoreFunc即可完成我们的大部分需求,懂的了这个,我们就可以将结果任意存储了,可以存到数据库,也可以存到索引文件,也可以存入本地txt,excel等等
下面先看下StoreFunc的源码:
- /*
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.pig;
- import java.io.IOException;
- import org.apache.hadoop.fs.FileSystem;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.mapreduce.Counter;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.OutputFormat;
- import org.apache.hadoop.mapreduce.RecordWriter;
- import org.apache.pig.classification.InterfaceAudience;
- import org.apache.pig.classification.InterfaceStability;
- import org.apache.pig.data.Tuple;
- import org.apache.pig.impl.util.UDFContext;
- import org.apache.pig.tools.pigstats.PigStatusReporter;
- /**
- * StoreFuncs take records from Pig's processing and store them into a data store. Most frequently
- * this is an HDFS file, but it could also be an HBase instance, RDBMS, etc.
- */
- @InterfaceAudience.Public
- @InterfaceStability.Stable
- public abstract class StoreFunc implements StoreFuncInterface {
- /**
- * This method is called by the Pig runtime in the front end to convert the
- * output location to an absolute path if the location is relative. The
- * StoreFunc implementation is free to choose how it converts a relative
- * location to an absolute location since this may depend on what the location
- * string represent (hdfs path or some other data source).
- *
- *
- * @param location location as provided in the "store" statement of the script
- * @param curDir the current working direction based on any "cd" statements
- * in the script before the "store" statement. If there are no "cd" statements
- * in the script, this would be the home directory -
- * <pre>/user/<username> </pre>
- * @return the absolute location based on the arguments passed
- * @throws IOException if the conversion is not possible
- */
- @Override
- public String relToAbsPathForStoreLocation(String location, Path curDir)
- throws IOException {
- return LoadFunc.getAbsolutePath(location, curDir);
- }
- /**
- * Return the OutputFormat associated with StoreFunc. This will be called
- * on the front end during planning and on the backend during
- * execution.
- * @return the {@link OutputFormat} associated with StoreFunc
- * @throws IOException if an exception occurs while constructing the
- * OutputFormat
- *
- */
- public abstract OutputFormat getOutputFormat() throws IOException;
- /**
- * Communicate to the storer the location where the data needs to be stored.
- * The location string passed to the {@link StoreFunc} here is the
- * return value of {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)}
- * This method will be called in the frontend and backend multiple times. Implementations
- * should bear in mind that this method is called multiple times and should
- * ensure there are no inconsistent side effects due to the multiple calls.
- * {@link #checkSchema(ResourceSchema)} will be called before any call to
- * {@link #setStoreLocation(String, Job)}.
- *
- * @param location Location returned by
- * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)}
- * @param job The {@link Job} object
- * @throws IOException if the location is not valid.
- */
- public abstract void setStoreLocation(String location, Job job) throws IOException;
- /**
- * Set the schema for data to be stored. This will be called on the
- * front end during planning if the store is associated with a schema.
- * A Store function should implement this function to
- * check that a given schema is acceptable to it. For example, it
- * can check that the correct partition keys are included;
- * a storage function to be written directly to an OutputFormat can
- * make sure the schema will translate in a well defined way. Default implementation
- * is a no-op.
- * @param s to be checked
- * @throws IOException if this schema is not acceptable. It should include
- * a detailed error message indicating what is wrong with the schema.
- */
- @Override
- public void checkSchema(ResourceSchema s) throws IOException {
- // default implementation is a no-op
- }
- /**
- * Initialize StoreFunc to write data. This will be called during
- * execution on the backend before the call to putNext.
- * @param writer RecordWriter to use.
- * @throws IOException if an exception occurs during initialization
- */
- public abstract void prepareToWrite(RecordWriter writer) throws IOException;
- /**
- * Write a tuple to the data store.
- *
- * @param t the tuple to store.
- * @throws IOException if an exception occurs during the write
- */
- public abstract void putNext(Tuple t) throws IOException;
- /**
- * This method will be called by Pig both in the front end and back end to
- * pass a unique signature to the {@link StoreFunc} which it can use to store
- * information in the {@link UDFContext} which it needs to store between
- * various method invocations in the front end and back end. This method
- * will be called before other methods in {@link StoreFunc}. This is necessary
- * because in a Pig Latin script with multiple stores, the different
- * instances of store functions need to be able to find their (and only their)
- * data in the UDFContext object. The default implementation is a no-op.
- * @param signature a unique signature to identify this StoreFunc
- */
- @Override
- public void setStoreFuncUDFContextSignature(String signature) {
- // default implementation is a no-op
- }
- /**
- * This method will be called by Pig if the job which contains this store
- * fails. Implementations can clean up output locations in this method to
- * ensure that no incorrect/incomplete results are left in the output location.
- * The default implementation deletes the output location if it
- * is a {@link FileSystem} location.
- * @param location Location returned by
- * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)}
- * @param job The {@link Job} object - this should be used only to obtain
- * cluster properties through {@link Job#getConfiguration()} and not to set/query
- * any runtime job information.
- */
- @Override
- public void cleanupOnFailure(String location, Job job)
- throws IOException {
- cleanupOnFailureImpl(location, job);
- }
- /**
- * This method will be called by Pig if the job which contains this store
- * is successful, and some cleanup of intermediate resources is required.
- * Implementations can clean up output locations in this method to
- * ensure that no incorrect/incomplete results are left in the output location.
- * @param location Location returned by
- * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)}
- * @param job The {@link Job} object - this should be used only to obtain
- * cluster properties through {@link Job#getConfiguration()} and not to set/query
- * any runtime job information.
- */
- @Override
- public void cleanupOnSuccess(String location, Job job)
- throws IOException {
- // DEFAULT: DO NOTHING, user-defined overrides can
- // call cleanupOnFailureImpl(location, job) or ...?
- }
- /**
- * Default implementation for {@link #cleanupOnFailure(String, Job)}
- * and {@link #cleanupOnSuccess(String, Job)}. This removes a file
- * from HDFS.
- * @param location file name (or URI) of file to remove
- * @param job Hadoop job, used to access the appropriate file system.
- * @throws IOException
- */
- public static void cleanupOnFailureImpl(String location, Job job)
- throws IOException {
- Path path = new Path(location);
- FileSystem fs = path.getFileSystem(job.getConfiguration());
- if(fs.exists(path)){
- fs.delete(path, true);
- }
- }
- /**
- * Issue a warning. Warning messages are aggregated and reported to
- * the user.
- * @param msg String message of the warning
- * @param warningEnum type of warning
- */
- public final void warn(String msg, Enum warningEnum) {
- Counter counter = PigStatusReporter.getInstance().getCounter(warningEnum);
- counter.increment(1);
- }
- }
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.pig; import java.io.IOException; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.mapreduce.Counter; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.OutputFormat; import org.apache.hadoop.mapreduce.RecordWriter; import org.apache.pig.classification.InterfaceAudience; import org.apache.pig.classification.InterfaceStability; import org.apache.pig.data.Tuple; import org.apache.pig.impl.util.UDFContext; import org.apache.pig.tools.pigstats.PigStatusReporter; /** * StoreFuncs take records from Pig's processing and store them into a data store. Most frequently * this is an HDFS file, but it could also be an HBase instance, RDBMS, etc. */ @InterfaceAudience.Public @InterfaceStability.Stable public abstract class StoreFunc implements StoreFuncInterface { /** * This method is called by the Pig runtime in the front end to convert the * output location to an absolute path if the location is relative. The * StoreFunc implementation is free to choose how it converts a relative * location to an absolute location since this may depend on what the location * string represent (hdfs path or some other data source). * * * @param location location as provided in the "store" statement of the script * @param curDir the current working direction based on any "cd" statements * in the script before the "store" statement. If there are no "cd" statements * in the script, this would be the home directory - * <pre>/user/<username> </pre> * @return the absolute location based on the arguments passed * @throws IOException if the conversion is not possible */ @Override public String relToAbsPathForStoreLocation(String location, Path curDir) throws IOException { return LoadFunc.getAbsolutePath(location, curDir); } /** * Return the OutputFormat associated with StoreFunc. This will be called * on the front end during planning and on the backend during * execution. * @return the {@link OutputFormat} associated with StoreFunc * @throws IOException if an exception occurs while constructing the * OutputFormat * */ public abstract OutputFormat getOutputFormat() throws IOException; /** * Communicate to the storer the location where the data needs to be stored. * The location string passed to the {@link StoreFunc} here is the * return value of {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)} * This method will be called in the frontend and backend multiple times. Implementations * should bear in mind that this method is called multiple times and should * ensure there are no inconsistent side effects due to the multiple calls. * {@link #checkSchema(ResourceSchema)} will be called before any call to * {@link #setStoreLocation(String, Job)}. * * @param location Location returned by * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)} * @param job The {@link Job} object * @throws IOException if the location is not valid. */ public abstract void setStoreLocation(String location, Job job) throws IOException; /** * Set the schema for data to be stored. This will be called on the * front end during planning if the store is associated with a schema. * A Store function should implement this function to * check that a given schema is acceptable to it. For example, it * can check that the correct partition keys are included; * a storage function to be written directly to an OutputFormat can * make sure the schema will translate in a well defined way. Default implementation * is a no-op. * @param s to be checked * @throws IOException if this schema is not acceptable. It should include * a detailed error message indicating what is wrong with the schema. */ @Override public void checkSchema(ResourceSchema s) throws IOException { // default implementation is a no-op } /** * Initialize StoreFunc to write data. This will be called during * execution on the backend before the call to putNext. * @param writer RecordWriter to use. * @throws IOException if an exception occurs during initialization */ public abstract void prepareToWrite(RecordWriter writer) throws IOException; /** * Write a tuple to the data store. * * @param t the tuple to store. * @throws IOException if an exception occurs during the write */ public abstract void putNext(Tuple t) throws IOException; /** * This method will be called by Pig both in the front end and back end to * pass a unique signature to the {@link StoreFunc} which it can use to store * information in the {@link UDFContext} which it needs to store between * various method invocations in the front end and back end. This method * will be called before other methods in {@link StoreFunc}. This is necessary * because in a Pig Latin script with multiple stores, the different * instances of store functions need to be able to find their (and only their) * data in the UDFContext object. The default implementation is a no-op. * @param signature a unique signature to identify this StoreFunc */ @Override public void setStoreFuncUDFContextSignature(String signature) { // default implementation is a no-op } /** * This method will be called by Pig if the job which contains this store * fails. Implementations can clean up output locations in this method to * ensure that no incorrect/incomplete results are left in the output location. * The default implementation deletes the output location if it * is a {@link FileSystem} location. * @param location Location returned by * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)} * @param job The {@link Job} object - this should be used only to obtain * cluster properties through {@link Job#getConfiguration()} and not to set/query * any runtime job information. */ @Override public void cleanupOnFailure(String location, Job job) throws IOException { cleanupOnFailureImpl(location, job); } /** * This method will be called by Pig if the job which contains this store * is successful, and some cleanup of intermediate resources is required. * Implementations can clean up output locations in this method to * ensure that no incorrect/incomplete results are left in the output location. * @param location Location returned by * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)} * @param job The {@link Job} object - this should be used only to obtain * cluster properties through {@link Job#getConfiguration()} and not to set/query * any runtime job information. */ @Override public void cleanupOnSuccess(String location, Job job) throws IOException { // DEFAULT: DO NOTHING, user-defined overrides can // call cleanupOnFailureImpl(location, job) or ...? } /** * Default implementation for {@link #cleanupOnFailure(String, Job)} * and {@link #cleanupOnSuccess(String, Job)}. This removes a file * from HDFS. * @param location file name (or URI) of file to remove * @param job Hadoop job, used to access the appropriate file system. * @throws IOException */ public static void cleanupOnFailureImpl(String location, Job job) throws IOException { Path path = new Path(location); FileSystem fs = path.getFileSystem(job.getConfiguration()); if(fs.exists(path)){ fs.delete(path, true); } } /** * Issue a warning. Warning messages are aggregated and reported to * the user. * @param msg String message of the warning * @param warningEnum type of warning */ public final void warn(String msg, Enum warningEnum) { Counter counter = PigStatusReporter.getInstance().getCounter(warningEnum); counter.increment(1); } }
这里面有许多方法,但并不都需要我们重新定义的,一般来说,我们只需要重写如下的几个抽象方法即可:
(1)getOutputFormat方法,与Hadoop的OutFormat对应,在最终的输出时,会根据不同的format方法,生成不同的形式。
(2)setStoreLocation方法,这个方法定义了生成文件的路径,如果不是存入HDFS上,则可以忽略。
(3)prepareToWrite 在写入数据之前做一些初始化工作
(4)putNext从Pig里面传递过来最终需要存储的数据
在1的步骤我们知道,需要提供一个outputFormat的类,这时就需要我们继承hadoop里面的某个outputformat基类,然后重写getRecordWriter方法,接下来我们还可能要继承RecordWriter类,来定义我们自己的输出格式,可能是一行txt数据,也有可能是一个对象,或一个索引集合等等,如下面支持lucene索引的outputformat
- package com.pig.support.lucene;
- import java.io.File;
- import java.io.IOException;
- import java.util.concurrent.atomic.AtomicInteger;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.FileSystem;
- import org.apache.hadoop.fs.FileUtil;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.Writable;
- import org.apache.hadoop.mapreduce.RecordWriter;
- import org.apache.hadoop.mapreduce.TaskAttemptContext;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.lucene.analysis.standard.StandardAnalyzer;
- import org.apache.lucene.document.Document;
- import org.apache.lucene.index.IndexWriter;
- import org.apache.lucene.index.IndexWriterConfig;
- import org.apache.lucene.index.LogByteSizeMergePolicy;
- import org.apache.lucene.index.SerialMergeScheduler;
- import org.apache.lucene.store.FSDirectory;
- import org.apache.lucene.util.Version;
- /**
- * 继承FileOutputFormat,重写支持Lucene格式的outputFormat策略
- * */
- public class LuceneOutputFormat extends FileOutputFormat<Writable, Document> {
- String location;
- FileSystem fs;
- String taskid;
- FileOutputCommitter committer;
- AtomicInteger counter = new AtomicInteger();
- public LuceneOutputFormat(String location) {
- this.location = location;
- }
- @Override
- public RecordWriter<Writable, Document> getRecordWriter(
- TaskAttemptContext ctx) throws IOException, InterruptedException {
- Configuration conf = ctx.getConfiguration();
- fs = FileSystem.get(conf);
- File baseDir = new File(System.getProperty("java.io.tmpdir"));
- String baseName = System.currentTimeMillis() + "-";
- File tempDir = new File(baseDir, baseName + counter.getAndIncrement());
- tempDir.mkdirs();
- tempDir.deleteOnExit();
- return new LuceneRecordWriter(
- (FileOutputCommitter) getOutputCommitter(ctx), tempDir);
- }
- /**
- * Write out the LuceneIndex to a local temporary location.<br/>
- * On commit/close the index is copied to the hdfs output directory.<br/>
- *
- */
- static class LuceneRecordWriter extends RecordWriter<Writable, Document> {
- final IndexWriter writer;
- final FileOutputCommitter committer;
- final File tmpdir;
- public LuceneRecordWriter(FileOutputCommitter committer, File tmpdir) {
- try {
- this.committer = committer;
- this.tmpdir = tmpdir;
- IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_4_10_2,
- new StandardAnalyzer());
- LogByteSizeMergePolicy mergePolicy = new LogByteSizeMergePolicy();
- mergePolicy.setMergeFactor(10);
- //mergePolicy.setUseCompoundFile(false);
- config.setMergePolicy(mergePolicy);
- config.setMergeScheduler(new SerialMergeScheduler());
- writer = new IndexWriter(FSDirectory.open(tmpdir),
- config);
- } catch (IOException e) {
- RuntimeException exc = new RuntimeException(e.toString(), e);
- exc.setStackTrace(e.getStackTrace());
- throw exc;
- }
- }
- @Override
- public void close(final TaskAttemptContext ctx) throws IOException,
- InterruptedException {
- //use a thread for status polling
- final Thread th = new Thread() {
- public void run() {
- ctx.progress();
- try {
- Thread.sleep(500);
- } catch (InterruptedException e) {
- Thread.currentThread().interrupt();
- return;
- }
- }
- };
- th.start();
- try {
- writer.forceMerge(1);
- writer.close();
- // move all files to part
- Configuration conf = ctx.getConfiguration();
- Path work = committer.getWorkPath();
- Path output = new Path(work, "index-"
- + ctx.getTaskAttemptID().getTaskID().getId());
- FileSystem fs = FileSystem.get(conf);
- FileUtil.copy(tmpdir, fs, output, true, conf);
- } finally {
- th.interrupt();
- }
- }
- @Override
- public void write(Writable key, Document doc) throws IOException,
- InterruptedException {
- writer.addDocument(doc);
- }
- }
- }
package com.pig.support.lucene; import java.io.File; import java.io.IOException; import java.util.concurrent.atomic.AtomicInteger; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.FileUtil; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapreduce.RecordWriter; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.index.LogByteSizeMergePolicy; import org.apache.lucene.index.SerialMergeScheduler; import org.apache.lucene.store.FSDirectory; import org.apache.lucene.util.Version; /** * 继承FileOutputFormat,重写支持Lucene格式的outputFormat策略 * */ public class LuceneOutputFormat extends FileOutputFormat<Writable, Document> { String location; FileSystem fs; String taskid; FileOutputCommitter committer; AtomicInteger counter = new AtomicInteger(); public LuceneOutputFormat(String location) { this.location = location; } @Override public RecordWriter<Writable, Document> getRecordWriter( TaskAttemptContext ctx) throws IOException, InterruptedException { Configuration conf = ctx.getConfiguration(); fs = FileSystem.get(conf); File baseDir = new File(System.getProperty("java.io.tmpdir")); String baseName = System.currentTimeMillis() + "-"; File tempDir = new File(baseDir, baseName + counter.getAndIncrement()); tempDir.mkdirs(); tempDir.deleteOnExit(); return new LuceneRecordWriter( (FileOutputCommitter) getOutputCommitter(ctx), tempDir); } /** * Write out the LuceneIndex to a local temporary location.<br/> * On commit/close the index is copied to the hdfs output directory.<br/> * */ static class LuceneRecordWriter extends RecordWriter<Writable, Document> { final IndexWriter writer; final FileOutputCommitter committer; final File tmpdir; public LuceneRecordWriter(FileOutputCommitter committer, File tmpdir) { try { this.committer = committer; this.tmpdir = tmpdir; IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_4_10_2, new StandardAnalyzer()); LogByteSizeMergePolicy mergePolicy = new LogByteSizeMergePolicy(); mergePolicy.setMergeFactor(10); //mergePolicy.setUseCompoundFile(false); config.setMergePolicy(mergePolicy); config.setMergeScheduler(new SerialMergeScheduler()); writer = new IndexWriter(FSDirectory.open(tmpdir), config); } catch (IOException e) { RuntimeException exc = new RuntimeException(e.toString(), e); exc.setStackTrace(e.getStackTrace()); throw exc; } } @Override public void close(final TaskAttemptContext ctx) throws IOException, InterruptedException { //use a thread for status polling final Thread th = new Thread() { public void run() { ctx.progress(); try { Thread.sleep(500); } catch (InterruptedException e) { Thread.currentThread().interrupt(); return; } } }; th.start(); try { writer.forceMerge(1); writer.close(); // move all files to part Configuration conf = ctx.getConfiguration(); Path work = committer.getWorkPath(); Path output = new Path(work, "index-" + ctx.getTaskAttemptID().getTaskID().getId()); FileSystem fs = FileSystem.get(conf); FileUtil.copy(tmpdir, fs, output, true, conf); } finally { th.interrupt(); } } @Override public void write(Writable key, Document doc) throws IOException, InterruptedException { writer.addDocument(doc); } } }
最后总结一下,自定义输入格式的步骤:
(1)继承StoreFunc函数,重写其方法
(2)继承一个outputformat基类,重写自己的outputformat类
(2)继承一个RecodeWriter,重写自己的writer方法
当然这并不都是必须的,比如在向数据库存储的时候,我们就可以直接在putNext的时候,获取,保存为集合,然后在OutputCommitter提交成功之后,commit我们的数据,如果保存失败,我们也可以在abort方法里回滚我们的数据。
相关推荐
3. **UDF(用户定义函数)扩展**:0.7.0版本提供了更多的内置UDF,同时也支持用户自定义UDF,这极大地增强了Pig的功能性和灵活性。用户可以通过编写Java代码或使用其他语言(如Python或JavaScript)来扩展Pig的功能...
- **编译器支持**:Pig系统内置了一个强大的编译器,能够将Pig Latin脚本编译成物理执行计划,最终在Hadoop平台上运行。这使得用户无需深入了解底层Map-Reduce框架的具体细节即可完成数据处理任务。 - **调试环境**...
3. 数据转换:通过Pig的内置函数或自定义函数,可以提取出日志中的特定字段,如IP地址、时间戳、请求类型等,进行进一步分析。 4. 数据分析:利用Pig的`GROUP BY`、`COUNT`、`AVG`等聚合操作,可以计算不同IP的请求...
- **hive函数大全.doc**:这可能是一份详细列出Hive支持的各种内置函数的参考手册,帮助用户在编写HQL时查找和使用各种函数。 - **hive_installation and load data.doc**:这份文档可能介绍了如何安装Hive以及如何...
用户定义的函数(UDF)是Pig Latin中的一个重要组成部分,允许开发者自定义处理逻辑,以处理Pig无法内置处理的复杂数据转换或业务规则。PDI Bridge使得PDI的转换和步骤可以作为Pig的UDF使用,从而扩展了Pig的数据...
- **内置函数丰富**:提供了丰富的内置函数,支持常见的数据处理操作,如过滤、排序、分组等。 - **易于扩展**:用户可以定义自己的函数,以便处理特定的数据处理需求。 - **核心组件**: - **PigScript**:...
8. **效率优化**:为了提高统计速度,工具可能采用了多线程或异步处理技术,同时处理多个文件,尤其在处理大量源代码时,性能优化至关重要。 9. **兼容性**:由于提到可以运行在Windows系统上,工具可能使用了跨...
5. 分析工具:可能包含内置的统计函数或机器学习算法,用于初步分析数据。 为了更好地利用"dataview",我们需要了解其具体用法、支持的文件格式以及如何与Hadoop集群集成。如果它是一个自定义开发的解决方案,可能...
* 内置大量用户函数 UDF 来操作时间、字符串和其他的数据挖掘工具,支持用户扩展 UDF 函数来完成内置函数无法实现的操作 * 类 SQL 的查询方式,将 SQL 查询转换为 MapReduce 的 job 在 Hadoop 集群上执行 * 编码跟 ...
Pig内置了许多函数和操作命令,通过这些程序语句对数据流进行处理。 HBase HBase是一个基于云计算的大数据处理架构中的数据存储层组件。HBase可以存储大量的数据,并提供高并发的读写操作。 索引 索引是对数据库表...
4. **数据类型和函数**:介绍Hive支持的各种数据类型,以及丰富的内置函数,如统计函数、日期函数、字符串处理函数等。 5. **数据加载与导出**:讲解如何将数据导入Hive表,以及将查询结果导出到其他系统或文件格式...
- **UDF**: 用户可以定义自己的函数来扩展Pig的功能。 **11.6 数据处理操作符** - **操作符**: 介绍了Pig中可用的数据处理操作符。 **11.7 Pig实践提示与技巧** - **实用建议**: 提供了一些Pig使用的实践建议和...
- Hive查询可以被Hue、Pig、MapReduce、Presto等其他Hadoop工具集成使用。 【应用场景】 - 大规模数据仓库:用于数据挖掘、报表生成和业务分析。 - 实时数据分析:虽然执行速度较慢,但在批处理场景下仍能满足需求...
12. **利用Hive内置函数**:合理使用Hive提供的内置函数可以简化查询语句并提高执行效率。 #### 六、Hive面试题(一) 1. **Hive是什么?** - Hive是一个建立在Hadoop之上的数据仓库工具,提供SQL-like的查询语言...
6. UDF(User Defined Functions)和UDAF(User Defined Aggregate Functions):Hive提供丰富的内置函数,同时用户可以自定义函数,扩展其功能。 7. Hive-on-MR和Hive-on-Spark:Hive 1.1.0支持在MapReduce和Spark...
前言 致谢 关于本书 第1 部分 背景和基本原理 1 跳跃中的Hadoop 1.1 什么是Hadoop ...附录B Hadoop 内置的数据导入导出工具 附录C HDFS 解剖. 附录D 优化MapReduce 合并框架 索引 收起全部↑
- **概念介绍**:Pig是一种数据分析工具,提供了一个高层数据流语言(Pig Latin),简化了Hadoop MapReduce程序的编写。 - **特点**: - 易用性:通过Pig Latin语言,用户无需深入理解MapReduce即可完成复杂的分析...
除了HDFS和MapReduce之外,Hadoop生态体系还包含了一系列其他的工具和技术,如Hive、Pig、HBase、ZooKeeper、Spark等,它们共同构成了一个强大的大数据处理平台。例如: - **Hive**:是一个数据仓库工具,用于进行...