单机程序使用使用hadoop的构建lucene索引,本篇呢,我们里看下如何使用MapReduce来构建索引,代码如下:
- package com.mapreduceindex;
- import java.io.IOException;
- import java.util.ArrayList;
- import java.util.List;
- import java.util.Random;
- import org.apache.commons.io.output.NullWriter;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.FileSystem;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.NullWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
- import org.apache.lucene.analysis.Analyzer;
- import org.apache.lucene.document.Document;
- import org.apache.lucene.document.Field.Store;
- import org.apache.lucene.document.StringField;
- import org.apache.lucene.document.TextField;
- import org.apache.lucene.index.IndexWriter;
- import org.apache.lucene.index.IndexWriterConfig;
- import org.apache.lucene.util.Version;
- import org.apache.solr.store.hdfs.HdfsDirectory;
- import org.mortbay.log.Log;
- import org.wltea.analyzer.lucene.IKAnalyzer;
- import com.qin.wordcount.MyWordCount;
- /**
- *
- * 使用MapReduce构建索引
- * @author qindongliang
- * 大数据技术交流群: 376932160
- * 搜索技术一号群: 324714439
- * 搜索技术一号群: 206247899
- * Hadoop版本2.2.0
- * Lucene版本4.8.0
- * Solr版本4.8.0
- *
- * **/
- public class BuildIndexMapReduce {
- /**
- * 获取一个IndexWriter
- * @param outDir 索引的输出目录
- * @return IndexWriter 获取一个IndexWriter
- * */
- public static IndexWriter getIndexWriter(String outDir) throws Exception{
- Analyzer analyzer=new IKAnalyzer(true);//IK分词
- IndexWriterConfig config=new IndexWriterConfig(Version.LUCENE_48, analyzer);
- Configuration conf=new Configuration();
- conf.set("fs.defaultFS","hdfs://192.168.46.32:9000/");//HDFS目录
- Path path=new Path("hdfs://192.168.46.32:9000/qin/"+outDir);//索引目录
- HdfsDirectory directory=new HdfsDirectory(path, conf);
- long heapSize = Runtime.getRuntime().totalMemory()/ 1024L / 1024L;//总内存
- long heapMaxSize = Runtime.getRuntime().maxMemory()/ 1024L / 1024L;//使用的最大内存
- config.setRAMBufferSizeMB(((heapMaxSize-heapSize)*0.7));//空闲内存的70%作为合并因子
- IndexWriter writer=new IndexWriter(directory, config);//
- return writer;
- }
- /**
- * 索引的工具类
- *
- * **/
- public static class LuceneDocumentUtil{
- public static Document getDoc(String filed,String value){
- Document d=new Document();
- //模拟载入schemal文件,根据solr的scheml文件来灵活的坐一些索引,
- d.add(new TextField("content", value, Store.YES));
- return d;
- }
- }
- /**
- * @author qindongliang
- *
- */
- private static class BuildIndexMapper extends Mapper<LongWritable, Text, NullWritable, NullWritable> {
- IndexWriter iw;
- List<Document> documenst=new ArrayList<>();
- @Override
- protected void setup(Context context)throws IOException, InterruptedException {
- Random rd=new Random();
- int i=rd.nextInt(99999999);//此处的索引目录名可以使用UUID来使它唯一
- try{
- iw=getIndexWriter(i+"");//初始化IndexWriter
- }catch(Exception e){
- e.printStackTrace();
- }
- }
- @Override
- protected void map(LongWritable key, Text value,Context context)
- throws IOException, InterruptedException {
- Log.info(" 记录的日志信息: "+value.toString());
- String values[]=value.toString().split("\1");//此处读入被索引的文件每一行
- String fieldName=values[0];
- String fieldValue=values[1];
- Document d=LuceneDocumentUtil.getDoc(fieldName, fieldValue);
- if(d==null){
- return;
- }
- documenst.add(d);
- if(documenst.size()>5000){//使用批处理提交
- iw.addDocuments(documenst);
- documenst.clear();
- }
- // context.write(null, null);
- }
- /***
- * 在Map结束时,做一些事,提交索引
- *
- * */
- @Override
- protected void cleanup(Context context)throws IOException, InterruptedException {
- if(documenst.size()>0){
- iw.addDocuments(documenst);
- }
- if(iw!=null){
- iw.close(true);//关闭至合并完成
- }
- }
- }
- public static void main(String[] args)throws Exception {
- Configuration conf=new Configuration();
- conf.set("mapreduce.job.jar", "myjob.jar");
- conf.set("fs.defaultFS","hdfs://192.168.46.32:9000");
- conf.set("mapreduce.framework.name", "yarn");
- conf.set("yarn.resourcemanager.address", "192.168.46.32:8032");
- /**Job任务**/
- //Job job=new Job(conf, "testwordcount");//废弃此API
- Job job=Job.getInstance(conf, "build index ");
- job.setJarByClass(BuildIndexMapReduce.class);
- System.out.println("模式: "+conf.get("yarn.resourcemanager.address"));;
- // job.setCombinerClass(PCombine.class);
- job.setNumReduceTasks(0);//设置为3
- job.setMapperClass(BuildIndexMapper.class);
- job.setInputFormatClass(TextInputFormat.class);
- job.setOutputFormatClass(TextOutputFormat.class);
- job.setMapOutputKeyClass(NullWritable.class);
- job.setMapOutputValueClass(NullWritable.class);
- String path="hdfs://192.168.46.32:9000/qin/output";
- FileSystem fs=FileSystem.get(conf);
- Path p=new Path(path);
- if(fs.exists(p)){
- fs.delete(p, true);
- System.out.println("输出路径存在,已删除!");
- }
- FileInputFormat.setInputPaths(job, "hdfs://192.168.46.32:9000/qin/indexinput");
- FileOutputFormat.setOutputPath(job,p );
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- }
- }
package com.mapreduceindex; import java.io.IOException; import java.util.ArrayList; import java.util.List; import java.util.Random; import org.apache.commons.io.output.NullWriter; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field.Store; import org.apache.lucene.document.StringField; import org.apache.lucene.document.TextField; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.util.Version; import org.apache.solr.store.hdfs.HdfsDirectory; import org.mortbay.log.Log; import org.wltea.analyzer.lucene.IKAnalyzer; import com.qin.wordcount.MyWordCount; /** * * 使用MapReduce构建索引 * @author qindongliang * 大数据技术交流群: 376932160 * 搜索技术一号群: 324714439 * 搜索技术一号群: 206247899 * Hadoop版本2.2.0 * Lucene版本4.8.0 * Solr版本4.8.0 * * **/ public class BuildIndexMapReduce { /** * 获取一个IndexWriter * @param outDir 索引的输出目录 * @return IndexWriter 获取一个IndexWriter * */ public static IndexWriter getIndexWriter(String outDir) throws Exception{ Analyzer analyzer=new IKAnalyzer(true);//IK分词 IndexWriterConfig config=new IndexWriterConfig(Version.LUCENE_48, analyzer); Configuration conf=new Configuration(); conf.set("fs.defaultFS","hdfs://192.168.46.32:9000/");//HDFS目录 Path path=new Path("hdfs://192.168.46.32:9000/qin/"+outDir);//索引目录 HdfsDirectory directory=new HdfsDirectory(path, conf); long heapSize = Runtime.getRuntime().totalMemory()/ 1024L / 1024L;//总内存 long heapMaxSize = Runtime.getRuntime().maxMemory()/ 1024L / 1024L;//使用的最大内存 config.setRAMBufferSizeMB(((heapMaxSize-heapSize)*0.7));//空闲内存的70%作为合并因子 IndexWriter writer=new IndexWriter(directory, config);// return writer; } /** * 索引的工具类 * * **/ public static class LuceneDocumentUtil{ public static Document getDoc(String filed,String value){ Document d=new Document(); //模拟载入schemal文件,根据solr的scheml文件来灵活的坐一些索引, d.add(new TextField("content", value, Store.YES)); return d; } } /** * @author qindongliang * */ private static class BuildIndexMapper extends Mapper<LongWritable, Text, NullWritable, NullWritable> { IndexWriter iw; List<Document> documenst=new ArrayList<>(); @Override protected void setup(Context context)throws IOException, InterruptedException { Random rd=new Random(); int i=rd.nextInt(99999999);//此处的索引目录名可以使用UUID来使它唯一 try{ iw=getIndexWriter(i+"");//初始化IndexWriter }catch(Exception e){ e.printStackTrace(); } } @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { Log.info(" 记录的日志信息: "+value.toString()); String values[]=value.toString().split("\1");//此处读入被索引的文件每一行 String fieldName=values[0]; String fieldValue=values[1]; Document d=LuceneDocumentUtil.getDoc(fieldName, fieldValue); if(d==null){ return; } documenst.add(d); if(documenst.size()>5000){//使用批处理提交 iw.addDocuments(documenst); documenst.clear(); } // context.write(null, null); } /*** * 在Map结束时,做一些事,提交索引 * * */ @Override protected void cleanup(Context context)throws IOException, InterruptedException { if(documenst.size()>0){ iw.addDocuments(documenst); } if(iw!=null){ iw.close(true);//关闭至合并完成 } } } public static void main(String[] args)throws Exception { Configuration conf=new Configuration(); conf.set("mapreduce.job.jar", "myjob.jar"); conf.set("fs.defaultFS","hdfs://192.168.46.32:9000"); conf.set("mapreduce.framework.name", "yarn"); conf.set("yarn.resourcemanager.address", "192.168.46.32:8032"); /**Job任务**/ //Job job=new Job(conf, "testwordcount");//废弃此API Job job=Job.getInstance(conf, "build index "); job.setJarByClass(BuildIndexMapReduce.class); System.out.println("模式: "+conf.get("yarn.resourcemanager.address"));; // job.setCombinerClass(PCombine.class); job.setNumReduceTasks(0);//设置为3 job.setMapperClass(BuildIndexMapper.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); job.setMapOutputKeyClass(NullWritable.class); job.setMapOutputValueClass(NullWritable.class); String path="hdfs://192.168.46.32:9000/qin/output"; FileSystem fs=FileSystem.get(conf); Path p=new Path(path); if(fs.exists(p)){ fs.delete(p, true); System.out.println("输出路径存在,已删除!"); } FileInputFormat.setInputPaths(job, "hdfs://192.168.46.32:9000/qin/indexinput"); FileOutputFormat.setOutputPath(job,p ); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
控制台生成的信息如下:
- 模式: 192.168.46.32:8032
- INFO - RMProxy.createRMProxy(56) | Connecting to ResourceManager at /192.168.46.32:8032
- WARN - JobSubmitter.copyAndConfigureFiles(149) | Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
- INFO - FileInputFormat.listStatus(287) | Total input paths to process : 3
- INFO - JobSubmitter.submitJobInternal(394) | number of splits:3
- INFO - Configuration.warnOnceIfDeprecated(840) | user.name is deprecated. Instead, use mapreduce.job.user.name
- INFO - Configuration.warnOnceIfDeprecated(840) | mapred.jar is deprecated. Instead, use mapreduce.job.jar
- INFO - Configuration.warnOnceIfDeprecated(840) | fs.default.name is deprecated. Instead, use fs.defaultFS
- INFO - Configuration.warnOnceIfDeprecated(840) | mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
- INFO - Configuration.warnOnceIfDeprecated(840) | mapred.mapoutput.value.class is deprecated. Instead, use mapreduce.map.output.value.class
- INFO - Configuration.warnOnceIfDeprecated(840) | mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
- INFO - Configuration.warnOnceIfDeprecated(840) | mapred.job.name is deprecated. Instead, use mapreduce.job.name
- INFO - Configuration.warnOnceIfDeprecated(840) | mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class
- INFO - Configuration.warnOnceIfDeprecated(840) | mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
- INFO - Configuration.warnOnceIfDeprecated(840) | mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
- INFO - Configuration.warnOnceIfDeprecated(840) | mapreduce.outputformat.class is deprecated. Instead, use mapreduce.job.outputformat.class
- INFO - Configuration.warnOnceIfDeprecated(840) | mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
- INFO - Configuration.warnOnceIfDeprecated(840) | mapred.mapoutput.key.class is deprecated. Instead, use mapreduce.map.output.key.class
- INFO - Configuration.warnOnceIfDeprecated(840) | mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
- INFO - JobSubmitter.printTokens(477) | Submitting tokens for job: job_1407866786826_0001
- INFO - YarnClientImpl.submitApplication(174) | Submitted application application_1407866786826_0001 to ResourceManager at /192.168.46.32:8032
- INFO - Job.submit(1272) | The url to track the job: http://h1:8088/proxy/application_1407866786826_0001/
- INFO - Job.monitorAndPrintJob(1317) | Running job: job_1407866786826_0001
- INFO - Job.monitorAndPrintJob(1338) | Job job_1407866786826_0001 running in uber mode : false
- INFO - Job.monitorAndPrintJob(1345) | map 0% reduce 0%
- INFO - Job.monitorAndPrintJob(1345) | map 33% reduce 0%
- INFO - Job.monitorAndPrintJob(1345) | map 100% reduce 0%
- INFO - Job.monitorAndPrintJob(1356) | Job job_1407866786826_0001 completed successfully
- INFO - Job.monitorAndPrintJob(1363) | Counters: 27
- File System Counters
- FILE: Number of bytes read=0
- FILE: Number of bytes written=238179
- FILE: Number of read operations=0
- FILE: Number of large read operations=0
- FILE: Number of write operations=0
- HDFS: Number of bytes read=67091
- HDFS: Number of bytes written=9708
- HDFS: Number of read operations=147
- HDFS: Number of large read operations=0
- HDFS: Number of write operations=75
- Job Counters
- Launched map tasks=3
- Data-local map tasks=3
- Total time spent by all maps in occupied slots (ms)=81736
- Total time spent by all reduces in occupied slots (ms)=0
- Map-Reduce Framework
- Map input records=166
- Map output records=0
- Input split bytes=326
- Spilled Records=0
- Failed Shuffles=0
- Merged Map outputs=0
- GC time elapsed (ms)=11308
- CPU time spent (ms)=9200
- Physical memory (bytes) snapshot=469209088
- Virtual memory (bytes) snapshot=2544439296
- Total committed heap usage (bytes)=245399552
- File Input Format Counters
- Bytes Read=62970
- File Output Format Counters
- Bytes Written=0
模式: 192.168.46.32:8032 INFO - RMProxy.createRMProxy(56) | Connecting to ResourceManager at /192.168.46.32:8032 WARN - JobSubmitter.copyAndConfigureFiles(149) | Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. INFO - FileInputFormat.listStatus(287) | Total input paths to process : 3 INFO - JobSubmitter.submitJobInternal(394) | number of splits:3 INFO - Configuration.warnOnceIfDeprecated(840) | user.name is deprecated. Instead, use mapreduce.job.user.name INFO - Configuration.warnOnceIfDeprecated(840) | mapred.jar is deprecated. Instead, use mapreduce.job.jar INFO - Configuration.warnOnceIfDeprecated(840) | fs.default.name is deprecated. Instead, use fs.defaultFS INFO - Configuration.warnOnceIfDeprecated(840) | mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces INFO - Configuration.warnOnceIfDeprecated(840) | mapred.mapoutput.value.class is deprecated. Instead, use mapreduce.map.output.value.class INFO - Configuration.warnOnceIfDeprecated(840) | mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class INFO - Configuration.warnOnceIfDeprecated(840) | mapred.job.name is deprecated. Instead, use mapreduce.job.name INFO - Configuration.warnOnceIfDeprecated(840) | mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class INFO - Configuration.warnOnceIfDeprecated(840) | mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir INFO - Configuration.warnOnceIfDeprecated(840) | mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir INFO - Configuration.warnOnceIfDeprecated(840) | mapreduce.outputformat.class is deprecated. Instead, use mapreduce.job.outputformat.class INFO - Configuration.warnOnceIfDeprecated(840) | mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps INFO - Configuration.warnOnceIfDeprecated(840) | mapred.mapoutput.key.class is deprecated. Instead, use mapreduce.map.output.key.class INFO - Configuration.warnOnceIfDeprecated(840) | mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir INFO - JobSubmitter.printTokens(477) | Submitting tokens for job: job_1407866786826_0001 INFO - YarnClientImpl.submitApplication(174) | Submitted application application_1407866786826_0001 to ResourceManager at /192.168.46.32:8032 INFO - Job.submit(1272) | The url to track the job: http://h1:8088/proxy/application_1407866786826_0001/ INFO - Job.monitorAndPrintJob(1317) | Running job: job_1407866786826_0001 INFO - Job.monitorAndPrintJob(1338) | Job job_1407866786826_0001 running in uber mode : false INFO - Job.monitorAndPrintJob(1345) | map 0% reduce 0% INFO - Job.monitorAndPrintJob(1345) | map 33% reduce 0% INFO - Job.monitorAndPrintJob(1345) | map 100% reduce 0% INFO - Job.monitorAndPrintJob(1356) | Job job_1407866786826_0001 completed successfully INFO - Job.monitorAndPrintJob(1363) | Counters: 27 File System Counters FILE: Number of bytes read=0 FILE: Number of bytes written=238179 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=67091 HDFS: Number of bytes written=9708 HDFS: Number of read operations=147 HDFS: Number of large read operations=0 HDFS: Number of write operations=75 Job Counters Launched map tasks=3 Data-local map tasks=3 Total time spent by all maps in occupied slots (ms)=81736 Total time spent by all reduces in occupied slots (ms)=0 Map-Reduce Framework Map input records=166 Map output records=0 Input split bytes=326 Spilled Records=0 Failed Shuffles=0 Merged Map outputs=0 GC time elapsed (ms)=11308 CPU time spent (ms)=9200 Physical memory (bytes) snapshot=469209088 Virtual memory (bytes) snapshot=2544439296 Total committed heap usage (bytes)=245399552 File Input Format Counters Bytes Read=62970 File Output Format Counters Bytes Written=0
本次,散仙测试的使用的数据源有3个文件,当然散仙在这里是小文件,在实际生产中,尽量避免有小文件存放在HDFS上,应该提前合并小文件为大文文件,散仙用了3个测试文件,所以会起了3个map进程,最后生成的索引,有3份,如果需要,我们还可以用生成的多份索引使用一个reduce作业,来完成合并。
相关推荐
在大数据时代,分布式索引方法已经成为构建高效云检索系统的关键技术之一。MapReduce模式为分布式索引的实现提供了理论基础和实践路径。本文所提出的MI-RM索引方法,通过在Map函数中进行文档的解析与索引,在Reduce...
总结一下,这个MapReduce实例展示了如何利用Hadoop的分布式计算能力构建倒排索引。Mapper阶段处理原始数据,Combiner阶段优化数据传输,Reducer阶段生成最终结果。倒排索引对于搜索引擎和大数据分析等应用至关重要,...
在Hadoop上使用MapReduce构建反向索引器 脚步 在Makefile中更改netid(默认为jguo7) $cd src 字数 $cd wordCount $make init: build up the directories in the HDFS, pre-process the input file and put it into...
根据提供的文件信息,本文将详细探讨“文档倒排索引的MapReduce程序设计与实现”这一主题,重点介绍倒排索引的基本概念、其在搜索引擎中的应用以及如何利用MapReduce框架来实现高效的文档倒排索引构建。 ### 倒排...
在大规模数据集上构建索引时,分布式系统能将任务分解成多个小任务,通过分布式节点并行处理,显著提高效率。Hadoop通过其分布式文件系统HDFS和MapReduce编程模型,为构建分布式索引提供了基础设施。 在分布式索引...
Apache Pig+MapReduce给Lucene/Solr/ElasticSearch构建索引 ####项目简介 主要是利用了Pig框架简化了自己写Hadoop MapReduce程序来构建大规模并行索引的问题,里面封装了主流的全文检索框架,如Lucene,Solr和...
7. 倒排索引总结(Inverted Index Summarizations):这是一个搜索引擎中常用的索引技术,MapReduce可以用来构建倒排索引,提高数据检索的速度。 8. 计数模式(Counting with Counters):计数器是MapReduce中用于...
在实际应用中,MapReduce常用于搜索引擎索引构建、网页链接分析、日志分析、机器学习等场景。通过MapReduce,开发者可以编写简单的Java程序来解决复杂的数据处理问题,而无需关心底层的分布式计算细节。 总的来说,...
MapReduce是一种分布式计算模型,由Google在2004年提出,主要用于处理和生成大规模数据集。...4. MapReduce适用于高吞吐量的离线批处理,如数据统计、搜索引擎索引构建、海量数据查询和复杂数据分析等场景。
标题中的“基于MapReduce的中文倒排索引简单实现”是指在大数据处理场景下,使用Hadoop的MapReduce框架来构建中文文本的倒排索引。倒排索引是一种常用的全文检索技术,它能快速定位到文档中某个关键词出现的位置。在...
在谷歌内部,MapReduce被广泛应用于搜索引擎索引构建、网页链接分析、日志数据分析等多种场景。同时,它也激发了开源社区的类似实现,如Apache Hadoop的MapReduce,这使得这种计算模型在大数据领域得到广泛应用。 ...
2. 倒排索引:使用 MapReduce 实现倒排索引构建。 总结 MapReduce 设计模式是大数据处理的核心组件,负责将大规模数据处理和分析任务分解为可并行处理的任务。MapReduce 设计模式的应用包括单词计数、记录计数、...
文章提到Facebook选择使用MapReduce技术构建其数据仓库系统而非Parallel DBMS的例子,这主要是因为Facebook需要处理大量非结构化的用户数据,并且进行频繁的数据更新和批量处理工作。相比之下,Parallel DBMS可能更...
总的来说,MapReduce是处理大数据的关键技术之一,它简化了大规模数据处理的复杂性,促进了信息检索和其他数据密集型应用的发展。随着资源获取的逐渐平等,包括数据和计算资源,MapReduce等分布式计算模型将使更多人...
- **全排序**:MapReduce可以通过中间键值对的排序来实现全数据集的排序,先在Map阶段生成排序的中间结果,然后在Reduce阶段进行归并排序。 - **混排**:在某些情况下,需要在所有数据之间进行混合排序,这可能...
- 实际应用中,MapReduce被广泛应用于搜索引擎的索引构建、推荐系统的协同过滤、日志分析等场景。通过学习这些案例,可以更好地理解MapReduce的实际价值和适用场景。 在“MapReduce高阶实现”的课程中,你将有机会...