`
hejiajunsh
  • 浏览: 409832 次
  • 性别: Icon_minigender_1
  • 来自: 天津
社区版块
存档分类
最新评论

[转]深入理解HashMap源码及实现

阅读更多

1.    HashMap概述:

    简而言之,HashMap是以Entry[]数组实现的哈希桶数组(哈希桶相关可参考:引入哈希桶的概念来实现一个哈希表),用Key的哈希值取模桶数组的大小可得到数组下标。HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

 

 

2.    HashMap的数据结构:

   在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。

 

   从上图中可以看出,HashMap底层就是一个数组结构,数组中的每一项又是一个链表。当新建一个HashMap的时候,就会初始化一个数组。

   源码如下:

 

Java代码  收藏代码
  1. /** 
  2.  * The table, resized as necessary. Length MUST Always be a power of two. 
  3.  */  
  4. transient Entry[] table;  
  5.   
  6. static class Entry<K,V> implements Map.Entry<K,V> {  
  7.     final K key;  
  8.     V value;  
  9.     Entry<K,V> next;  
  10.     final int hash;  
  11.     ……  
  12. }  

 

   可以看出,Entry就是数组中的元素,每个 Map.Entry 其实就是一个key-value对,它持有一个指向下一个元素的引用,这就构成了链表。

 

3.    HashMap的存取实现:

   1) 存储:

 

Java代码  收藏代码
  1. public V put(K key, V value) {  
  2.     // HashMap允许存放null键和null值。  
  3.     // 当key为null时,调用putForNullKey方法,将value放置在数组第一个位置。  
  4.     if (key == null)  
  5.         return putForNullKey(value);  
  6.     // 根据key的keyCode重新计算hash值。  
  7.     int hash = hash(key.hashCode());  
  8.     // 搜索指定hash值在对应table中的索引。  
  9.     int i = indexFor(hash, table.length);  
  10.     // 如果 i 索引处的 Entry 不为 null,通过循环不断遍历 e 元素的下一个元素。  
  11.     for (Entry<K,V> e = table[i]; e != null; e = e.next) {  
  12.         Object k;  
  13.         if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {  
  14.             V oldValue = e.value;  
  15.             e.value = value;  
  16.             e.recordAccess(this);  
  17.             return oldValue;  
  18.         }  
  19.     }  
  20.     // 如果i索引处的Entry为null,表明此处还没有Entry。  
  21.     modCount++;  
  22.     // 将key、value添加到i索引处。  
  23.     addEntry(hash, key, value, i);  
  24.     return null;  
  25. }  

 

 

   从上面的源代码中可以看出:当我们往HashMap中put元素的时候,先根据key的hashCode重新计算hash值,根据hash值得到这个元素在数组中的位置(即下标),如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。

   addEntry(hash, key, value, i)方法根据计算出的hash值,将key-value对放在数组table的i索引处。addEntry 是HashMap 提供的一个包访问权限的方法,代码如下:

 

Java代码  收藏代码
  1. void addEntry(int hash, K key, V value, int bucketIndex) {  
  2.     // 获取指定 bucketIndex 索引处的 Entry   
  3.     Entry<K,V> e = table[bucketIndex];  
  4.     // 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry  
  5.     table[bucketIndex] = new Entry<K,V>(hash, key, value, e);  
  6.     // 如果 Map 中的 key-value 对的数量超过了极限  
  7.     if (size++ >= threshold)  
  8.     // 把 table 对象的长度扩充到原来的2倍。  
  9.         resize(2 * table.length);  
  10. }  

 

 

   当系统决定存储HashMap中的key-value对时,完全没有考虑Entry中的value,仅仅只是根据key来计算并决定每个Entry的存储位置。我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可。

   hash(int h)方法根据key的hashCode重新计算一次散列。此算法加入了高位计算,防止低位不变,高位变化时,造成的hash冲突。

 

Java代码  收藏代码
  1. static int hash(int h) {  
  2.     h ^= (h >>> 20) ^ (h >>> 12);  
  3.     return h ^ (h >>> 7) ^ (h >>> 4);  
  4. }  

 

 

   我们可以看到在HashMap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表,这样就大大优化了查询的效率。

   对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 hash 码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,在HashMap中是这样做的:调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。indexFor(int h, int length) 方法的代码如下:

 

Java代码  收藏代码
  1. static int indexFor(int h, int length) {  
  2.     return h & (length-1);  
  3. }  

 

 

    这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是 2 的n 次方,这是HashMap在速度上的优化。在存储大容量数据的时候,最好预先指定HashMap的size为2的整数次幂次方。若不指定,则以大于且最接近指定值大小的2次幂来初始化。在 HashMap 构造器中有如下代码:

 

Java代码  收藏代码
  1. int capacity = 1;  
  2.     while (capacity < initialCapacity)  
  3.         capacity <<= 1;  

   这段代码保证初始化时HashMap的容量总是2n次方,即底层数组的长度总是为2n次方。

当length总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

   这看上去很简单,其实比较有玄机的,我们举个例子来说明:

   假设数组长度分别为15和16,优化后的hash码分别为8和9,那么&运算后的结果如下:

       h & (table.length-1)                     hash                             table.length-1

       8 & (15-1):                                 0100                   &              1110                   =                0100

       9 & (15-1):                                 0101                   &              1110                   =                0100

       -----------------------------------------------------------------------------------------------------------------------

       8 & (16-1):                                 0100                   &              1111                   =                0100

       9 & (16-1):                                 0101                   &              1111                   =                0101

  

   从上面的例子中可以看出:当它们和15-1(1110)“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到数组中的同一个位置上形成链表,那么查询的时候就需要遍历这个链 表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hash值会与15-1(1110)进行“与”,那么 最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!而当数组长度为16时,即为2的n次方时,2n-1得到的二进制数的每个位上的值都为1,这使得在低位上&时,得到的和原hash的低位相同,加之hash(int h)方法对key的hashCode的进一步优化,加入了高位计算,就使得只有相同的hash值的两个值才会被放到数组中的同一个位置上形成链表。

   

   所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。

   根据上面 put 方法的源代码可以看出,当程序试图将一个key-value对放入HashMap中时,程序首先根据该 key的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有Entry 的 value,但key不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的头部——具体说明继续看 addEntry() 方法的说明。

 

 

   2) 读取:

 

Java代码  收藏代码
  1. public V get(Object key) {  
  2.     if (key == null)  
  3.         return getForNullKey();  
  4.     int hash = hash(key.hashCode());  
  5.     for (Entry<K,V> e = table[indexFor(hash, table.length)];  
  6.         e != null;  
  7.         e = e.next) {  
  8.         Object k;  
  9.         if (e.hash == hash && ((k = e.key) == key || key.equals(k)))  
  10.             return e.value;  
  11.     }  
  12.     return null;  
  13. }  

 

 

   有了上面存储时的hash算法作为基础,理解起来这段代码就很容易了。从上面的源代码中可以看出:从HashMap中get元素时,首先计算key的hashCode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。

  

   3) 归纳起来简单地说,HashMap 在底层将 key-value 当成一个整体进行处理,这个整体就是一个 Entry 对象。HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当需要存储一个 Entry 对象时,会根据hash算法来决定其在数组中的存储位置,在根据equals方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry时,也会根据hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Entry。

 

4.    HashMap的resize(rehash):

   当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对HashMap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,这是一个常用的操作,而在HashMap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。

   那么HashMap什么时候进行扩容呢?当HashMap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

 

 

5.    HashMap的性能参数:

   HashMap 包含如下几个构造器:

   HashMap():构建一个初始容量为 16,负载因子为 0.75 的 HashMap。

   HashMap(int initialCapacity):构建一个初始容量为 initialCapacity,负载因子为 0.75 的 HashMap。

   HashMap(int initialCapacity, float loadFactor):以指定初始容量、指定的负载因子创建一个 HashMap。

   HashMap的基础构造器HashMap(int initialCapacity, float loadFactor)带有两个参数,它们是初始容量initialCapacity和加载因子loadFactor。

   initialCapacity:HashMap的最大容量,即为底层数组的长度。

   loadFactor:负载因子loadFactor定义为:散列表的实际元素数目(n)/ 散列表的容量(m)。

   负载因子衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。

   HashMap的实现中,通过threshold字段来判断HashMap的最大容量:

Java代码  收藏代码
  1. threshold = (int)(capacity * loadFactor);  

   结合负载因子的定义公式可知,threshold就是在此loadFactor和capacity对应下允许的最大元素数目,超过这个数目就重新resize,以降低实际的负载因子。默认的的负载因子0.75是对空间和时间效率的一个平衡选择。当容量超出此最大容量时, resize后的HashMap容量是容量的两倍:

 

Java代码  收藏代码
  1. if (size++ >= threshold)     
  2.     resize(2 * table.length);    

 

6.    Fail-Fast机制:

   我们知道java.util.HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略。

   这一策略在源码中的实现是通过modCount域,modCount顾名思义就是修改次数,对HashMap内容的修改都将增加这个值,那么在迭代器初始化过程中会将这个值赋给迭代器的expectedModCount。

 

Java代码  收藏代码
  1. HashIterator() {  
  2.     expectedModCount = modCount;  
  3.     if (size > 0) { // advance to first entry  
  4.     Entry[] t = table;  
  5.     while (index < t.length && (next = t[index++]) == null)  
  6.         ;  
  7.     }  
  8. }  

 

 

   在迭代过程中,判断modCount跟expectedModCount是否相等,如果不相等就表示已经有其他线程修改了Map:

   注意到modCount声明为volatile,保证线程之间修改的可见性。

 

Java代码  收藏代码
  1. final Entry<K,V> nextEntry() {     
  2.     if (modCount != expectedModCount)     
  3.         throw new ConcurrentModificationException();  

 

   在HashMap的API中指出:

   由所有HashMap类的“collection 视图方法”所返回的迭代器都是快速失败的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的 remove 方法,其他任何时间任何方式的修改,迭代器都将抛出ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间发生任意不确定行为的风险。

   注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。

 

参考资料:

深入Java集合学习系列:HashMap的实现原理

深入理解HashMap

通过分析 JDK 源代码研究 Hash 存储机制    java.util.HashMap源码要点浅析

分享到:
评论

相关推荐

    面试必考之HashMap源码分析与实现

    在Java编程语言中,HashMap是集合框架中一个重要的类,用于存储键值对的数据结构。面试中,HashMap的源码分析与实现是一个常见的考察点,...深入学习和实践HashMap源码,能够帮助我们更好地理解和优化Java应用程序。

    hashMap1.8源码

    HashMap是Java编程语言中最常用的集合类之一,它提供了一种基于...通过深入理解这些细节,开发者可以更好地利用HashMap,避免潜在的问题,并优化性能。对于学习者来说,阅读源码并结合实践是掌握HashMap的最好方式。

    手写HashMap源码.rar

    在面试过程中,尤其是2020年及以后的技术面试中,深入理解HashMap的实现原理成为了考察候选人基础技能的重要环节。本篇文章将通过分析一个名为"MyHashMap"的手写HashMap源码,来探讨HashMap的内部机制,帮助提升编程...

    深入Java集合学习系列:HashMap的实现原理

    总之,深入理解HashMap的实现原理对于Java开发者来说至关重要。这不仅有助于写出更高效、更稳定的代码,也有助于在面试中展示出扎实的编程基础。通过本文的介绍,你应该对HashMap有了更深入的认识,包括其数据结构、...

    HashMap源码剖析共10页.pdf.zip

    《HashMap源码剖析》 HashMap是Java编程语言中一个非常重要的数据结构,它在实际开发中被广泛应用。作为集合框架的一部分,HashMap实现了Map...在Java开发中,深入理解HashMap将使我们更加熟练地驾驭这个强大的工具。

    HashMap 源码分析

    《HashMap 源码解析——JDK11版本》 HashMap是Java中广泛使用的非同步散列表,其设计和实现是高效且灵活的。在JDK1.8之前,HashMap的底层数据...理解HashMap的源码对于深入学习Java集合框架和数据结构具有重要意义。

    易语言源码易语言HashMap类源码.rar

    通过分析和学习易语言HashMap类的源码,开发者可以深入理解哈希表的工作原理,以及易语言如何实现高效的数据结构。这对于提升编程技能,尤其是理解和优化数据结构的性能,具有很大的帮助。同时,源码也可以作为参考...

    深入arraylist,linkedlist,hashmap,hashset源码(2012/3/18)

    总结来说,深入理解ArrayList、LinkedList、HashMap和HashSet的源码,有助于我们更好地利用它们的特性,优化代码性能,并在面临并发问题时做出正确的选择。对于开发人员来说,掌握这些基础数据结构的实现原理是提高...

    JavaHashSet和HashMap源码剖析编程开发技术

    本篇技术文档将深入剖析这两类数据结构的源码,帮助开发者理解其内部实现原理,提升在实际开发中的应用能力。 HashSet类是基于HashMap实现的,它不包含重复元素,并且不保证集合中元素的顺序。在HashSet中,元素的...

    深入理解Java之HashMap源码剖析

    深入理解Java中的HashMap源码,有助于我们更好地掌握这个常用数据结构的工作原理。HashMap是Java集合框架的重要组成部分,它实现了Map接口,提供了一种快速查找、插入和删除元素的方式。本文将详细解析HashMap的内部...

    HashMap源码分析

    ### HashMap源码分析 #### 一、概述 `HashMap`是Java编程语言中非常重要的一个数据结构,它属于`java.util`包的一部分,是`Map`接口的一个具体实现类。`HashMap`允许存储键值对,并且支持使用`null`作为键或值,这...

    HashMap讲解注释版本.java

    对HashMap 源码逐行进行注释,带你深入理解HashMap原理,使面试不在困难,

    (003)HashMap中红黑树TreeNode的split方法源码解读.docx

    HashMap 中红黑树 TreeNode 的 split 方法源码解读 HashMap 中红黑树 TreeNode 的 split 方法是...通过对 split 方法的源码解析,我们可以更好地理解红黑树的实现机制和关键算法,从而更好地应用 Java 中的 HashMap。

    基于JavaScript的HashMap实现

    在JavaScript中,HashMap是一种常用的键值对存储结构,它提供了快速的插入、删除和查找操作。...通过阅读和理解HashMap.js文件中的源码,开发者可以更好地掌握JavaScript的底层原理,并在实际项目中灵活应用。

    在Java8与Java7中HashMap源码实现的对比

    总结,Java 8的HashMap源码实现通过引入红黑树优化了高负载情况下的性能,降低了哈希冲突的影响,而Java 7则相对简单,适合小规模数据存储。在实际应用中,应根据数据量和性能需求选择合适的版本。对于开发者来说,...

    源码解析jdk7.0集合(3):HashMap的底层实现原理.pdf

    ### JDK 7.0集合系列解析之...通过深入解析HashMap在JDK 7.0中的底层实现原理,可以更好地理解其运行机制和性能特性。掌握这些知识,可以帮助开发者合理使用HashMap,并针对不同的应用场景作出适当的调整和优化。

    HashMap与HashTable的区别(含源码分析)

    在Java编程语言中,`HashMap`和`HashTable`都是实现键值对存储的数据结构,但它们之间存在一些显著的区别,这些区别主要体现在...对于学习和理解,源码阅读是非常有价值的,可以帮助深入理解Java集合框架的设计原理。

    java7hashmap源码-knowledge-juc:知识-juc

    总结起来,深入理解Java 7 HashMap的源码,可以帮助我们更好地利用这个工具,同时也能为设计自己的数据结构提供灵感。在JUC(Java并发编程)领域,理解这些底层机制对于编写高效并发代码至关重要。对于系统开源项目...

Global site tag (gtag.js) - Google Analytics