编写不易,转载请注明(http://shihlei.iteye.com/blog/2263757)!
最近项目,需要对两个文件进行连接查询,从文件2中提取在文件1中选线id的记录。
主要问题:两个文件都很大【 文件1:1亿记录 ; 文件2:8亿记录 】
方案:
一 Hadoop Reduce Join
1思想
根据输入标记数据源,根据提供的Group key 分组,在Reduce侧处理组内容,完成连接。
2 实现
(1)定义可标记的输出类型
/**
*
* 1 根据文件名作为tag,区分数据来源 2 将数据封装成TaggedMapOutput 对象,并打上必要的tag 3 生成group
* by的分组key,作为依据
*
* */
public static class JoinMapper extends DataJoinMapperBase {
/**
* 读取输入的文件路径
*
* **/
protected Text generateInputTag(String inputFile) {
// 取文件名的A和B作为来源标记
String datasource = StringUtils.splitByWholeSeparatorPreserveAllTokens(inputFile, ".", 2)[0];
return new Text(datasource);
}
/***
* 分组的Key
*
* **/
protected Text generateGroupKey(TaggedMapOutput aRecord) {
String line = ((Text) aRecord.getData()).toString();
if (StringUtils.isBlank(line)) {
return null;
}
// 去每个文件的第一个字段作为连接key
String groupKey = StringUtils.splitByWholeSeparatorPreserveAllTokens(line, ",", 2)[0];
return new Text(groupKey);
}
/**
* 对文件打上标记
*/
protected TaggedMapOutput generateTaggedMapOutput(Object value) {
TaggedWritable retv = new TaggedWritable((Text) value);
retv.setTag(this.inputTag);
return retv;
}
}
// 自定义输出类型=====================================================
public static class TaggedWritable extends TaggedMapOutput {
private Writable data;
// 需要定义默认构造函数,否则报错
public TaggedWritable() {
this.tag = new Text();
}
public TaggedWritable(Writable data) {
this.tag = new Text("");
this.data = data;
}
public Writable getData() {
return data;
}
public void setData(Writable data) {
this.data = data;
}
public void write(DataOutput out) throws IOException {
this.tag.write(out);
// 由于定义类型为WriteAble 所以不好使
out.writeUTF(this.data.getClass().getName());
this.data.write(out);
}
public void readFields(DataInput in) throws IOException {
this.tag.readFields(in);
this.data.readFields(in);
String dataClz = in.readUTF();
try {
if (this.data == null || !this.data.getClass().getName().equals(dataClz)) {
this.data = (Writable) ReflectionUtils.newInstance(Class.forName(dataClz), null);
}
this.data.readFields(in);
} catch (ClassNotFoundException cnfe) {
System.out.println("Problem in TaggedWritable class, method readFields.");
}
}
}
遇到的坑:——跟Hadoop实战的区别
a)没有默认构造函数
报错:
java.lang.Exception: java.lang.RuntimeException: java.lang.NoSuchMethodException: x.bd.hadoop.join.MR1ReduceJoinJob$TaggedWritable.<init>()
at org.apache.hadoop.mapred.LocalJobRunner$Job.runTasks(LocalJobRunner.java:462)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:529)
Caused by: java.lang.RuntimeException: java.lang.NoSuchMethodException: x.bd.hadoop.join.MR1ReduceJoinJob$TaggedWritable.<init>()
at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:131)
at org.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:66)
at org.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:42)
at org.apache.hadoop.mapred.Task$ValuesIterator.readNextValue(Task.java:1421)
at org.apache.hadoop.mapred.Task$ValuesIterator.next(Task.java:1361)
at org.apache.hadoop.mapred.ReduceTask$ReduceValuesIterator.moveToNext(ReduceTask.java:220)
at org.apache.hadoop.mapred.ReduceTask$ReduceValuesIterator.next(ReduceTask.java:216)
at org.apache.hadoop.contrib.utils.join.DataJoinReducerBase.regroup(DataJoinReducerBase.java:106)
at org.apache.hadoop.contrib.utils.join.DataJoinReducerBase.reduce(DataJoinReducerBase.java:129)
at org.apache.hadoop.mapred.ReduceTask.runOldReducer(ReduceTask.java:444)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:392)
at org.apache.hadoop.mapred.LocalJobRunner$Job$ReduceTaskRunnable.run(LocalJobRunner.java:319)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.NoSuchMethodException: x.bd.hadoop.join.MR1ReduceJoinJob$TaggedWritable.<init>()
at java.lang.Class.getConstructor0(Class.java:3082)
at java.lang.Class.getDeclaredConstructor(Class.java:2178)
at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:125)
解决:
添加默认构造器。
b)反序列化readFields空指针
报错:
java.lang.Exception: java.lang.NullPointerException
at org.apache.hadoop.mapred.LocalJobRunner$Job.runTasks(LocalJobRunner.java:462)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:529)
Caused by: java.lang.NullPointerException
at x.bd.hadoop.join.MR1ReduceJoinJob$TaggedWritable.readFields(MR1ReduceJoinJob.java:160)
at org.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:71)
at org.apache.hadoop.io.serializer.WritableSerialization$WritableDeserializer.deserialize(WritableSerialization.java:42)
at org.apache.hadoop.mapred.Task$ValuesIterator.readNextValue(Task.java:1421)
at org.apache.hadoop.mapred.Task$ValuesIterator.next(Task.java:1361)
at org.apache.hadoop.mapred.ReduceTask$ReduceValuesIterator.moveToNext(ReduceTask.java:220)
at org.apache.hadoop.mapred.ReduceTask$ReduceValuesIterator.next(ReduceTask.java:216)
at org.apache.hadoop.contrib.utils.join.DataJoinReducerBase.regroup(DataJoinReducerBase.java:106)
at org.apache.hadoop.contrib.utils.join.DataJoinReducerBase.reduce(DataJoinReducerBase.java:129)
at org.apache.hadoop.mapred.ReduceTask.runOldReducer(ReduceTask.java:444)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:392)
at org.apache.hadoop.mapred.LocalJobRunner$Job$ReduceTaskRunnable.run(LocalJobRunner.java:319)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
原因:
在反序列化时有如下(《Hadoop实战》中):
public void readFields(DataInput in) throws IOException {
this.tag.readFields(in);
this.data.readFields(in);
}
这时两个成员变量还没有值
解决:
1 在构造是创建Text 类型 Tag对象。
2 由于Data 对象无法是Writeable类型,无法创建,所以只能在序列化时多记录类型,在readRields时反射出来。
详细见上代码。
(2)继承DataJoinMapperBase 实现记录标记
主要实现三个方法:
/**
* 根据文件名实现找打标记
*/
protected abstract Text generateInputTag(String inputFile);
/**
* 对本行记录打上标记,生成TaggedMapOutput
*/
protected abstract TaggedMapOutput generateTaggedMapOutput(Object value);
/**
* 生成分组key,其实就是Reduce的key
*/
protected abstract Text generateGroupKey(TaggedMapOutput aRecord);
代码:
/**
*
* 1 根据文件名作为tag,区分数据来源 2 将数据封装成TaggedMapOutput 对象,并打上必要的tag 3 生成group
* by的分组key,作为依据
*
* */
public static class JoinMapper extends DataJoinMapperBase {
/**
* 读取输入的文件路径
*
* **/
protected Text generateInputTag(String inputFile) {
// 取文件名的A和B作为来源标记
String datasource = StringUtils.splitByWholeSeparatorPreserveAllTokens(inputFile, ".", 2)[0];
return new Text(datasource);
}
/***
* 分组的Key
*
* **/
protected Text generateGroupKey(TaggedMapOutput aRecord) {
String line = ((Text) aRecord.getData()).toString();
if (StringUtils.isBlank(line)) {
return null;
}
// 去每个文件的第一个字段作为连接key
String groupKey = StringUtils.splitByWholeSeparatorPreserveAllTokens(line, ",", 2)[0];
return new Text(groupKey);
}
/**
* 对文件打上标记
*/
protected TaggedMapOutput generateTaggedMapOutput(Object value) {
TaggedWritable retv = new TaggedWritable((Text) value);
retv.setTag(this.inputTag);
return retv;
}
}
(3)继承DataJoinReducerBase 根据条件数据数据
主要实现combin()方法,完成连接操作
public static class JoinReducer extends DataJoinReducerBase {
/**
* tags,标签集合,且有顺序通常按照文件读取顺序 values,标签值,
*
* 本方法被调一次,会传递一组要连接的记录,文件1的一条,文件2的一条
*/
protected TaggedMapOutput combine(Object[] tags, Object[] values) {
// 按照需求,非left join 或 right join所以要求
if (tags.length < 2)
return null;
String joinedStr = "";
for (int i = 0; i < values.length; i++) {
// 设置拼接符
if (i > 0)
joinedStr += ",";
TaggedWritable tw = (TaggedWritable) values[i];
String line = ((Text) tw.getData()).toString();
String[] tokens = line.split(",", 2);
joinedStr += tokens[1];
}
// 写出
TaggedWritable retv = new TaggedWritable(new Text(joinedStr));
retv.setTag((Text) tags[0]);
return retv;
}
}
(4)整体调用代码
public class MR1ReduceJoinJob {
public static void main(String[] args) throws Exception {
String in = "/Test/demo/in";
String out = "/Test/demo/out";
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
JobConf job = buildJob(new Path(in), new Path(out), fs, conf);
RunningJob runningJob = JobClient.runJob(job);
// 等待结束
runningJob.waitForCompletion();
if (runningJob.isSuccessful()) {
System.out.println("success ! ");
} else {
System.out.println(runningJob.getFailureInfo());
}
}
public static JobConf buildJob(Path in, Path out, FileSystem fs, Configuration conf) throws IOException {
fs.delete(out, true);
JobConf job = new JobConf(new Configuration(), MR1ReduceJoinJob.class);
job.setJobName("MR1ReduceJoinJob");
job.setJarByClass(MR1ReduceJoinJob.class);
job.setMapperClass(JoinMapper.class);
job.setReducerClass(JoinReducer.class);
job.setNumReduceTasks(1);
job.setInputFormat(TextInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(TaggedWritable.class);
job.set("mapred.textoutputformat.separator", ",");
// 解决死循环问题
job.setLong("datajoin.maxNumOfValuesPerGroup", Long.MAX_VALUE);
FileInputFormat.addInputPath(job, in);
FileOutputFormat.setOutputPath(job, out);
return job;
}
}
输入文件:
A:
1,a
2,b
3,c
B:
1,11
1,111
2,22
2,222
4,44
输出文件:
1,a,111
1,a,11
2,b,222
2,b,22
其他的坑:
大文件执行是一直出这个:
2-13 17:54:45 -2924 [localfetcher#5] INFO - closeInMemoryFile -> map-output of size: 215770, inMemoryMapOutputs.size() -> 2, commitMemory -> 829095, usedMemory ->1044865
2015-12-13 17:54:45 -2925 [localfetcher#5] INFO - localfetcher#5 about to shuffle output of map attempt_local647573184_0001_m_000009_0 decomp: 205864 len: 205868 to MEMORY
2015-12-13 17:54:45 -2925 [localfetcher#5] INFO - Read 205864 bytes from map-output for attempt_local647573184_0001_m_000009_0
2015-12-13 17:54:45 -2925 [localfetcher#5] INFO - closeInMemoryFile -> map-output of size: 205864, inMemoryMapOutputs.size() -> 3, commitMemory -> 1044865, usedMemory ->1250729
2015-12-13 17:54:45 -2926 [localfetcher#5] INFO - localfetcher#5 about to shuffle output of map attempt_local647573184_0001_m_000007_0 decomp: 211843 len: 211847 to MEMORY
2015-12-13 17:54:45 -2926 [localfetcher#5] INFO - Read 211843 bytes from map-output for attempt_local647573184_0001_m_000007_0
2015-12-13 17:54:45 -2926 [localfetcher#5] INFO - closeInMemoryFile -> map-output of size: 211843, inMemoryMapOutputs.size() -> 4, commitMemory -> 1250729, usedMemory ->1462572
2015-12-13 17:54:45 -2927 [localfetcher#5] INFO - localfetcher#5 about to shuffle output of map attempt_local647573184_0001_m_000000_0 decomp: 851861 len: 851865 to MEMORY
2015-12-13 17:54:45 -2929 [localfetcher#5] INFO - Read 851861 bytes from map-output for attempt_local647573184_0001_m_000000_0
2015-12-1
根据源码及别人方案,要改成
job.setLong("datajoin.maxNumOfValuesPerGroup", Long.MAX_VALUE);
后来问题又不出现了。
4 不足
- 基于mrv1 实现,API 交旧
-
Map的问题:
(1)只能基于文件名分组,要求连接的文件名必须能区分
(2)generateTaggedMapOutput()还需要手动绑定Tag
-
Reduce 问题:
(1)迭代输出时不能灵活控制,框架给分组,输出单个文件的字段会重,需要自己处理。
-
排序相同Group key的记录,也不适合处理超大的记录,可以通过二次排序改进。
-
我这种需要查找exist的需求不好实现。
二 基于MR V2 重写并改进
1 TaggedValue
package x.bd.hadoop.join.base;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableUtils;
import org.apache.hadoop.util.ReflectionUtils;
/**
* 可标记的结果
*
* @author shilei
*
*/
public class TaggedValue implements Writable {
private Text tag;
private Writable data;
public TaggedValue() {
tag = new Text();
}
public TaggedValue(Writable data) {
tag = new Text();
this.data = data;
}
@Override
public void write(DataOutput out) throws IOException {
// 写出内容
this.tag.write(out);
out.writeUTF(this.data.getClass().getName());
this.data.write(out);
}
@Override
public void readFields(DataInput in) throws IOException {
this.tag.readFields(in);
String dataClz = in.readUTF();
try {
if (this.data == null || !this.data.getClass().getName().equals(dataClz)) {
this.data = (Writable) ReflectionUtils.newInstance(Class.forName(dataClz), null);
}
this.data.readFields(in);
} catch (ClassNotFoundException cnfe) {
System.out.println("Problem in TaggedWritable class, method readFields.");
}
}
public Text getTag() {
return tag;
}
public void setTag(Text tag) {
this.tag = tag;
}
public Writable getData() {
return data;
}
public void setData(Writable data) {
this.data = data;
}
/**
* clone克隆 一个 对象数据
*
* @param conf
* @return
*/
public TaggedValue clone(Configuration conf) {
return (TaggedValue) WritableUtils.clone(this, conf);
}
public static void main(String[] args) {
System.out.println(TaggedValue.class.getName());
}
}
2 DataJoinMapBase
package x.bd.hadoop.join.base;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
/**
* 连接查询 Mapper
*
* @author shilei
*
* @param <KEYIN>
* @param <VALUEIN>
*/
public abstract class DataJoinMapperBase<KEYIN, VALUEIN> extends Mapper<KEYIN, VALUEIN, Text, TaggedValue> {
// 类型标记
protected Text inputTag;
// 输入文件路径,文件名
protected String inputFilePath, inputFileName;
/**
* 根据数据的文件名确定输入标签
*
*/
protected abstract Text generateInputTagByFile(String inputFilePath, String inputFileName);
/**
* 根据行内容处理Tag
*
* @param inputFilePath
* @param inputFileName
* @return
*/
protected Text generateInputTagByLine(Text tag, KEYIN key, VALUEIN value, Context context) {
return inputTag;
}
/**
* 封装待标签的输出
*/
protected abstract TaggedValue generateTaggedMapValue(VALUEIN value);
/**
* 生成group by的列
*/
protected abstract Text generateGroupKey(TaggedValue tagValue);
@Override
protected void setup(Mapper<KEYIN, VALUEIN, Text, TaggedValue>.Context context) throws IOException, InterruptedException {
FileSplit inputSplit = (FileSplit)context.getInputSplit();
this.inputFilePath = inputSplit.getPath().getParent().getName();
this.inputFileName = inputSplit.getPath().getName();
this.inputTag = generateInputTagByFile(this.inputFilePath, this.inputFileName);
}
@Override
public void map(KEYIN key, VALUEIN value, Context context) throws IOException, InterruptedException {
// 根据本行情况,处理Tag
this.inputTag = generateInputTagByLine(this.inputTag, key, value, context);
// 生成带标签的value
TaggedValue taggedValue = generateTaggedMapValue(value);
if (taggedValue == null) {
context.getCounter("DataJoinMapper", "discardedCount").increment(1);
return;
}
// 生成分组健
Text groupKey = generateGroupKey(taggedValue);
if (groupKey == null) {
context.getCounter("DataJoinMapper", "nullGroupKeyCount").increment(1);
return;
}
// 输出内容绑定标签
taggedValue.setTag(this.inputTag);
// key : group key , value : taggedValue
context.write(groupKey, taggedValue);
context.getCounter("DataJoinMapper", "outCount").increment(1);
}
}
3 DataJoinReduceJoin
package x.bd.hadoop.join.base;
import java.io.IOException;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.SortedMap;
import java.util.TreeMap;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
/**
* 连接查询Reduce
*
* @author shilei
*
* @param <KEYOUT>
* @param <VALUEOUT>
*/
public abstract class DataJoinReducerBase<KEYOUT, VALUEOUT> extends Reducer<Text, TaggedValue, KEYOUT, VALUEOUT> {
@Override
protected void setup(Reducer<Text, TaggedValue, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
super.setup(context);
}
/**
* 合并结果
*/
protected abstract void combine(SortedMap<Text, List<TaggedValue>> valueGroups, Reducer<Text, TaggedValue, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException;
@Override
protected void reduce(Text key, Iterable<TaggedValue> values, Reducer<Text, TaggedValue, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
// 获得一个sort map ,key 是tab ,value 是结果的集合
SortedMap<Text, List<TaggedValue>> groups = regroup(key, values, context);
combine(groups, context);
context.getCounter("DataJoinReucer", "groupCount").increment(1);
}
/**
* 按照Tag 对value 进行充分组
*
* @param key
* @param arg1
* @param reporter
* @return
* @throws IOException
*/
private SortedMap<Text, List<TaggedValue>> regroup(Text key, Iterable<TaggedValue> values, Reducer<Text, TaggedValue, KEYOUT, VALUEOUT>.Context context) throws IOException {
/*
* key: tag; value : TaggedValue
*/
SortedMap<Text, List<TaggedValue>> valueGroup = new TreeMap<Text, List<TaggedValue>>();
// 遍历Value
Iterator<TaggedValue> iter = values.iterator();
while (iter.hasNext()) {
// TODO 为什么需要克隆?
TaggedValue taggedValue = ((TaggedValue) iter.next()).clone(context.getConfiguration());
// 获得记录的 tag
Text tag = taggedValue.getTag();
// 从map 中获取一个iterator,如果已经创建,就做一个情况
List<TaggedValue> datas = valueGroup.get(tag);
if (datas == null) {
datas = new LinkedList<TaggedValue>();
valueGroup.put(tag, datas);
}
datas.add(taggedValue);
// System.out.println("reduce : " + taggedValue + "|" +
// tag.toString() + "|" + taggedValue.getData().toString());
taggedValue = null;
}
return valueGroup;
}
}
4 整体调用
package x.bd.hadoop.join;
import java.io.IOException;
import java.util.Iterator;
import java.util.List;
import java.util.SortedMap;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import x.bd.hadoop.join.base.DataJoinMapperBase;
import x.bd.hadoop.join.base.DataJoinReducerBase;
import x.bd.hadoop.join.base.TaggedValue;
/**
* 使用Hadoop API 对数据进行 Reduce 连接</br>
*
* 文件1:A.txt 1,a</br> 2,b </br> 3,c
*
* 文件2:B.txt 1,11</br> 1,111</br> 2,22</br> 2,222</br>4,44
*
* 关联查询(要求inner join): 1,a,11</br> 1,a,111</br> 2,b,22 </br> 2,b,222</br>
*
*
* @author shilei
*
*/
public class MR2SelfReduceJoinJob extends Configured implements Tool {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
int res = ToolRunner.run(conf, new MR2SelfReduceJoinJob(), args);
if (res == 0) {
System.out.println("MR2SelfReduceJoinJob success !");
} else {
System.out.println("MR2SelfReduceJoinJob error ! ");
}
System.exit(res);
}
@Override
public int run(String[] args) throws Exception {
String in = "/Test/demo/in";
String out = "/Test/demo/out";
Path inPath = new Path(in);
Path outPath = new Path(out);
Configuration conf = getConf();
FileSystem fs = FileSystem.get(conf);
fs.delete(outPath, true);
Job job = Job.getInstance(conf, "MR2SelfReduceJoinJob");
job.setJarByClass(MR2SelfReduceJoinJob.class);
job.setMapperClass(JoinMapper.class);
job.setReducerClass(JoinReducer.class);
job.setNumReduceTasks(1);
// 处理map的输出
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(TaggedValue.class);
job.setOutputKeyClass(Writable.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.addInputPath(job, inPath);
FileOutputFormat.setOutputPath(job, outPath);
if (job.waitForCompletion(true)) {
return 0;
} else {
return 1;
}
}
// Map=======================================
/**
*
* 1 根据文件名作为tag,区分数据来源 2 将数据封装成TaggedMapOutput 对象,并打上必要的tag 3 生成group
* by的分组key,作为依据
*
* */
public static class JoinMapper extends DataJoinMapperBase<Object, Text> {
/**
* 读取输入的文件路径
*
*/
@Override
protected Text generateInputTagByFile(String inputFilePath, String inputFileName) {
// 取文件名的A和B作为来源标记
String datasource = StringUtils.splitByWholeSeparatorPreserveAllTokens(inputFileName, ".", 2)[0];
return new Text(datasource);
}
/**
* 按需峰值要处理的记录,这里只需要原样输出
*/
@Override
protected TaggedValue generateTaggedMapValue(Text value) {
return new TaggedValue(value);
}
/**
* 数据的第一个字段作为分组key
*/
@Override
protected Text generateGroupKey(TaggedValue tagValue) {
String line = ((Text) tagValue.getData()).toString();
if (StringUtils.isBlank(line)) {
return null;
}
// 去每个文件的第一个字段作为连接key
String groupKey = StringUtils.splitByWholeSeparatorPreserveAllTokens(line, ",", 2)[0];
return new Text(groupKey);
}
}
// Reduce============================================
public static class JoinReducer extends DataJoinReducerBase<Writable, NullWritable> {
private Text key = new Text("B");
@Override
protected void combine(SortedMap<Text, List<TaggedValue>> valueGroups, Reducer<Text, TaggedValue, Writable, NullWritable>.Context context) throws IOException, InterruptedException {
// 必须能连接上
if (valueGroups.size() < 2) {
return;
}
// 这里只输出文件2的字段
// 写出
List<TaggedValue> cookieValues = valueGroups.get(key);
Iterator<TaggedValue> iter = cookieValues.iterator();
while (iter.hasNext()) {
TaggedValue value = iter.next();
if (value == null) {
continue;
}
context.write(value.getData(), NullWritable.get());
}
}
}
}
三 源码包
相关推荐
本文将深入探讨Map JOIN和Reduce JOIN两种在Hadoop中实现JOIN的方法,并通过代码示例来阐述它们的工作原理。 1. Map JOIN: Map JOIN在Hadoop中主要应用于小表与大表的连接。小表的数据可以完全加载到内存中,而大...
本文将深入探讨如何使用Hadoop和MapReduce进行高效的Join查询,并解析如何通过`hadoop_join.jar`这个工具来实现这一过程。 Hadoop是Apache软件基金会开发的一个开源分布式计算框架,它的核心组件包括HDFS(Hadoop ...
Hadoop2.6版本稳定版API文档CHM文件
赠送jar包:hadoop-yarn-api-2.5.1.jar; 赠送原API文档:hadoop-yarn-api-2.5.1-javadoc.jar; 赠送源代码:hadoop-yarn-api-2.5.1-sources.jar; 赠送Maven依赖信息文件:hadoop-yarn-api-2.5.1.pom; 包含翻译后...
Hadoop 2.10.0中文版API是大数据处理领域的一个重要参考资料,它为开发者提供了详尽的接口文档,帮助他们理解和使用Hadoop生态系统中的各种组件。Hadoop是一个开源框架,主要用于分布式存储和分布式计算,是大数据...
Hadoop2 API帮助文档是针对Hadoop 2.x版本的核心组件提供的一份详细参考资料,旨在帮助开发者高效地利用Hadoop框架进行大数据处理和分析。Hadoop是一个开源的分布式计算框架,由Apache软件基金会维护,其核心包括...
赠送原API文档:hbase-hadoop2-compat-1.2.12-javadoc.jar; 赠送源代码:hbase-hadoop2-compat-1.2.12-sources.jar; 赠送Maven依赖信息文件:hbase-hadoop2-compat-1.2.12.pom; 包含翻译后的API文档:hbase-...
在大数据处理领域,Hadoop MapReduce 是一种广泛使用的分布式计算框架。在处理涉及多数据集的任务时,Join 操作是必不可少的,它用于合并来自不同数据源的相关数据。本文主要探讨了两种 MapReduce 中的 Join 实现:...
【标题】"基于Hadoop的好友推荐系统"揭示了如何利用大数据处理框架Hadoop来构建一个高效、可扩展的社交网络中的好友推荐功能。在现代的社交媒体平台中,好友推荐是提升用户粘性和互动性的重要手段,通过分析用户的...
hadoop中文版API.chm文件,查找hadoop的类中方法、方法的用法等,方便、好用
Hadoop API帮助文档,学习Nutch和Hadoop必备
它的核心组件包括HDFS(Hadoop Distributed File System)和MapReduce,而Java API是开发者与Hadoop交互的主要方式。本文将深入探讨Java如何操作Hadoop,以及在"Java-API-Operate-Hadoop.rar"压缩包中提供的资源。 ...
这是一个基于hadoop的云盘系统,实现的界面是用javaweb完成的,使用的是spring Struts2 hibernate集合框架,配有sql文件。直接导入后运行这是一个基于hadoop的云盘系统,实现的界面是用javaweb完成的,使用的是...
标题 "Hadoop+HBase+Java API" 涉及到三个主要的开源技术:Hadoop、HBase以及Java API,这些都是大数据处理和存储领域的关键组件。以下是对这些技术及其结合使用的详细介绍: **Hadoop** 是一个分布式计算框架,由...
### Hadoop Map-Reduce 教程详析 #### 目标与作用 Hadoop Map-Reduce框架是设计用于处理大规模数据集(多太字节级)的软件框架,它允许在大量廉价硬件集群上(可达数千节点)进行并行处理,确保了数据处理的可靠性...
包含翻译后的API文档:hadoop-hdfs-2.6.5-javadoc-API文档-中文(简体)-英语-对照版.zip; Maven坐标:org.apache.hadoop:hadoop-hdfs:2.6.5; 标签:apache、hdfs、hadoop、jar包、java、API文档、中英对照版; 使用...
Hadoop是Apache Lucene的创始人 Doung Cutting 创建的, Hadoop起源于Apache Nutch, 一个开源的网络搜索引擎,也是Apache的Lucene项目的一部分。Hadoop是创始人Doung Cutting的儿子给一头大象起的名字。 Hadoop的子...
### Hadoop新旧API对比及应用 #### 一、引言 随着Hadoop生态系统的不断发展和完善,其核心组件之一——MapReduce也在不断演进。为了更好地支持分布式计算的需求,Hadoop引入了新的API(Application Programming ...