转http://blog.csdn.net/wawmg/article/details/17095125
在MR实践中,会有很多小文件,单个文件产生一个mapper,资源比较浪费,后续没有reduce逻辑的话,会产生很多小文件,文件数量暴涨,对后续的hive job产生影响。
所以需要在mapper中将多个文件合成一个split作为输入,CombineFileInputFormat满足我们的需求。
CombineFileInputFormat 原理(网上牛人总结):
第一次:将同DN上的所有block生成Split,生成方式:
1.循环nodeToBlocks,获得每个DN上有哪些block
2.循环这些block列表
3.将block从blockToNodes中移除,避免同一个block被包含在多个split中
4.将该block添加到一个有效block的列表中,这个列表主要是保留哪些block已经从blockToNodes中被移除了,方便后面恢复到blockToNodes中
5.向临时变量curSplitSize增加block的大小
6.判断curSplitSize是否已经超过了设置的maxSize
a) 如果超过,执行并添加split信息,并重置curSplitSize和validBlocks
b) 没有超过,继续循环block列表,跳到第2步
7.当前DN上的block列表循环完成,判断剩余的block是否允许被split(剩下的block大小之和是否大于每个DN的最小split大小)
a) 如果允许,执行并添加split信息
b) 如果不被允许,将这些剩余的block归还blockToNodes
8.重置
9.跳到步骤1
- // process all nodes and create splits that are local
- // to a node.
- //创建同一个DN上的split
- for (Iterator<Map.Entry<String,
- List<OneBlockInfo>>> iter = nodeToBlocks.entrySet().iterator();
- iter.hasNext();) {
- Map.Entry<String, List<OneBlockInfo>> one = iter.next();
- nodes.add(one.getKey());
- List<OneBlockInfo> blocksInNode = one.getValue();
- // for each block, copy it into validBlocks. Delete it from
- // blockToNodes so that the same block does not appear in
- // two different splits.
- for (OneBlockInfo oneblock : blocksInNode) {
- if (blockToNodes.containsKey(oneblock)) {
- validBlocks.add(oneblock);
- blockToNodes.remove(oneblock);
- curSplitSize += oneblock.length;
- // if the accumulated split size exceeds the maximum, then
- // create this split.
- if (maxSize != 0 && curSplitSize >= maxSize) {
- // create an input split and add it to the splits array
- //创建这些block合并后的split,并将其split添加到split列表中
- addCreatedSplit(job, splits, nodes, validBlocks);
- //重置
- curSplitSize = 0;
- validBlocks.clear();
- }
- }
- }
- // if there were any blocks left over and their combined size is
- // larger than minSplitNode, then combine them into one split.
- // Otherwise add them back to the unprocessed pool. It is likely
- // that they will be combined with other blocks from the same rack later on.
- //其实这里的注释已经说的很清楚,我再按照我的理解说一下
- /**
- * 这里有几种情况:
- * 1、在这个DN上还有没有被split的block,
- * 而且这些block的大小大于了在一个DN上的split最小值(没有达到最大值),
- * 将把这些block合并成一个split
- * 2、剩余的block的大小还是没有达到,将剩余的这些block
- * 归还给blockToNodes,等以后统一处理
- */
- if (minSizeNode != 0 && curSplitSize >= minSizeNode) {
- // create an input split and add it to the splits array
- addCreatedSplit(job, splits, nodes, validBlocks);
- } else {
- for (OneBlockInfo oneblock : validBlocks) {
- blockToNodes.put(oneblock, oneblock.hosts);
- }
- }
- validBlocks.clear();
- nodes.clear();
- curSplitSize = 0;
- }
第二次:对不再同一个DN上但是在同一个Rack上的block进行合并(只是之前还剩下的block)
- // if blocks in a rack are below the specified minimum size, then keep them
- // in 'overflow'. After the processing of all racks is complete, these overflow
- // blocks will be combined into splits.
- ArrayList<OneBlockInfo> overflowBlocks = new ArrayList<OneBlockInfo>();
- ArrayList<String> racks = new ArrayList<String>();
- // Process all racks over and over again until there is no more work to do.
- //这里处理的就不再是同一个DN上的block
- //同一个DN上的已经被处理过了(上面的代码),这里是一些
- //还没有被处理的block
- while (blockToNodes.size() > 0) {
- // Create one split for this rack before moving over to the next rack.
- // Come back to this rack after creating a single split for each of the
- // remaining racks.
- // Process one rack location at a time, Combine all possible blocks that
- // reside on this rack as one split. (constrained by minimum and maximum
- // split size).
- // iterate over all racks
- //创建同机架的split
- for (Iterator<Map.Entry<String, List<OneBlockInfo>>> iter =
- rackToBlocks.entrySet().iterator(); iter.hasNext();) {
- Map.Entry<String, List<OneBlockInfo>> one = iter.next();
- racks.add(one.getKey());
- List<OneBlockInfo> blocks = one.getValue();
- // for each block, copy it into validBlocks. Delete it from
- // blockToNodes so that the same block does not appear in
- // two different splits.
- boolean createdSplit = false;
- for (OneBlockInfo oneblock : blocks) {
- //这里很重要,现在的blockToNodes说明的是还有哪些block没有被split
- if (blockToNodes.containsKey(oneblock)) {
- validBlocks.add(oneblock);
- blockToNodes.remove(oneblock);
- curSplitSize += oneblock.length;
- // if the accumulated split size exceeds the maximum, then
- // create this split.
- if (maxSize != 0 && curSplitSize >= maxSize) {
- // create an input split and add it to the splits array
- addCreatedSplit(job, splits, getHosts(racks), validBlocks);
- createdSplit = true;
- break;
- }
- }
- }
- // if we created a split, then just go to the next rack
- if (createdSplit) {
- curSplitSize = 0;
- validBlocks.clear();
- racks.clear();
- continue;
- }
- //还有没有被split的block
- //如果这些block的大小大于了同机架的最小split,
- //则创建split
- //否则,将这些block留到后面处理
- if (!validBlocks.isEmpty()) {
- if (minSizeRack != 0 && curSplitSize >= minSizeRack) {
- // if there is a mimimum size specified, then create a single split
- // otherwise, store these blocks into overflow data structure
- addCreatedSplit(job, splits, getHosts(racks), validBlocks);
- } else {
- // There were a few blocks in this rack that remained to be processed.
- // Keep them in 'overflow' block list. These will be combined later.
- overflowBlocks.addAll(validBlocks);
- }
- }
- curSplitSize = 0;
- validBlocks.clear();
- racks.clear();
- }
- }
最后,对于既不在同DN也不在同rack的block进行合并(经过前两步还剩下的block),这里源码就没有什么了,就不再贴了
源码总结:
合并,经过了3个步骤。同DN----》同rack不同DN-----》不同rack
将可以合并的block写到同一个split中
下面是实践代码:
原始文件是70M每个的小文件,有些更小,sequence类型,需要自己实现RecordRead(Text就比较简单),key是byteWrite类型,现在需要减少文件个数,每个文件的大小接近block的大小。
自定义CombineSequenceFileInputFormat:
- package com.hadoop.combineInput;
- import java.io.IOException;
- import org.apache.hadoop.mapreduce.InputSplit;
- import org.apache.hadoop.mapreduce.RecordReader;
- import org.apache.hadoop.mapreduce.TaskAttemptContext;
- import org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat;
- import org.apache.hadoop.mapreduce.lib.input.CombineFileRecordReader;
- import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit;
- public class CombineSequenceFileInputFormat<K, V> extends CombineFileInputFormat<K, V> {
- @SuppressWarnings({ "unchecked", "rawtypes" })
- @Override
- public RecordReader<K, V> createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException {
- return new CombineFileRecordReader((CombineFileSplit)split, context, CombineSequenceFileRecordReader.class);
- }
- }
实现 CombineSequenceFileRecordReader
- package com.hadoop.combineInput;
- import java.io.IOException;
- import org.apache.hadoop.mapreduce.InputSplit;
- import org.apache.hadoop.mapreduce.RecordReader;
- import org.apache.hadoop.mapreduce.TaskAttemptContext;
- import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit;
- import org.apache.hadoop.mapreduce.lib.input.FileSplit;
- import org.apache.hadoop.mapreduce.lib.input.SequenceFileRecordReader;
- import org.apache.hadoop.util.ReflectionUtils;
- public class CombineSequenceFileRecordReader<K, V> extends RecordReader<K, V> {
- private CombineFileSplit split;
- private TaskAttemptContext context;
- private int index;
- private RecordReader<K, V> rr;
- @SuppressWarnings("unchecked")
- public CombineSequenceFileRecordReader(CombineFileSplit split, TaskAttemptContext context, Integer index) throws IOException, InterruptedException {
- this.index = index;
- this.split = (CombineFileSplit) split;
- this.context = context;
- this.rr = ReflectionUtils.newInstance(SequenceFileRecordReader.class, context.getConfiguration());
- }
- @SuppressWarnings("unchecked")
- @Override
- public void initialize(InputSplit curSplit, TaskAttemptContext curContext) throws IOException, InterruptedException {
- this.split = (CombineFileSplit) curSplit;
- this.context = curContext;
- if (null == rr) {
- rr = ReflectionUtils.newInstance(SequenceFileRecordReader.class, context.getConfiguration());
- }
- FileSplit fileSplit = new FileSplit(this.split.getPath(index),
- this.split.getOffset(index), this.split.getLength(index),
- this.split.getLocations());
- this.rr.initialize(fileSplit, this.context);
- }
- @Override
- public float getProgress() throws IOException, InterruptedException {
- return rr.getProgress();
- }
- @Override
- public void close() throws IOException {
- if (null != rr) {
- rr.close();
- rr = null;
- }
- }
- @Override
- public K getCurrentKey()
- throws IOException, InterruptedException {
- return rr.getCurrentKey();
- }
- @Override
- public V getCurrentValue()
- throws IOException, InterruptedException {
- return rr.getCurrentValue();
- }
- @Override
- public boolean nextKeyValue() throws IOException, InterruptedException {
- return rr.nextKeyValue();
- }
- }
main函数比较简单,这里也贴出来下,方便后续自己记忆:
- package com.hadoop.combineInput;
- import java.io.IOException;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.conf.Configured;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.BytesWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
- import org.apache.hadoop.util.Tool;
- import org.apache.hadoop.util.ToolRunner;
- public class MergeFiles extends Configured implements Tool {
- public static class MapClass extends Mapper<BytesWritable, Text, BytesWritable, Text> {
- public void map(BytesWritable key, Text value, Context context)
- throws IOException, InterruptedException {
- context.write(key, value);
- }
- } // END: MapClass
- public int run(String[] args) throws Exception {
- Configuration conf = new Configuration();
- conf.set("mapred.max.split.size", "157286400");
- conf.setBoolean("mapred.output.compress", true);
- Job job = new Job(conf);
- job.setJobName("MergeFiles");
- job.setJarByClass(MergeFiles.class);
- job.setMapperClass(MapClass.class);
- job.setInputFormatClass(CombineSequenceFileInputFormat.class);
- job.setOutputFormatClass(SequenceFileOutputFormat.class);
- job.setOutputKeyClass(BytesWritable.class);
- job.setOutputValueClass(Text.class);
- FileInputFormat.addInputPaths(job, args[0]);
- FileOutputFormat.setOutputPath(job, new Path(args[1]));
- job.setNumReduceTasks(0);
- return job.waitForCompletion(true) ? 0 : 1;
- } // END: run
- public static void main(String[] args) throws Exception {
- int ret = ToolRunner.run(new MergeFiles(), args);
- System.exit(ret);
- } // END: main
- } //
性能测试:70M大小的压缩sequence文件,2000个,转换成是700个压缩sequence文件,平均每个200M(可控),blocksize=256,耗时2分半到3分钟。
存在问题:
- 合并后会造成mapper不能本地化,带来mapper的额外开销,需要权衡
相关推荐
### Hadoop技术要点详解 #### 一、海量数据处理平台架构演变 随着互联网技术的快速发展,数据量呈爆炸性增长,传统的数据处理方法已无法满足需求。为了应对大规模数据处理的挑战,各种分布式数据处理平台应运而生...
【大数据面试题详解】 在大数据领域,面试题通常围绕着核心技术进行,如Hadoop、Spark、Flink等。本文将重点解析Hadoop的相关知识点,帮助你深入理解和掌握这些技术。 ### Hadoop #### 1. HDFS(Hadoop ...
### HDFS小文件处理方案详解 #### 一、概述与挑战 HDFS(Hadoop Distributed File System)设计初衷是为了高效地存储和处理大型文件。然而,在面对大量的小文件时,HDFS面临着诸多挑战: 1. **内存限制**:...
MapReduce是一个用于处理大规模数据集的分布式计算模型,它由Google首先提出并在Hadoop项目中得到了广泛应用。MapReduce的设计初衷是为了简化大规模数据集的处理过程,使得开发者能够更专注于业务逻辑而不是底层细节...
嵌入式八股文面试题库资料知识宝典-华为的面试试题.zip
训练导控系统设计.pdf
嵌入式八股文面试题库资料知识宝典-网络编程.zip
人脸转正GAN模型的高效压缩.pdf
少儿编程scratch项目源代码文件案例素材-几何冲刺 转瞬即逝.zip
少儿编程scratch项目源代码文件案例素材-鸡蛋.zip
嵌入式系统_USB设备枚举与HID通信_CH559单片机USB主机键盘鼠标复合设备控制_基于CH559单片机的USB主机模式设备枚举与键盘鼠标数据收发系统支持复合设备识别与HID
嵌入式八股文面试题库资料知识宝典-linux常见面试题.zip
面向智慧工地的压力机在线数据的预警应用开发.pdf
基于Unity3D的鱼类运动行为可视化研究.pdf
少儿编程scratch项目源代码文件案例素材-霍格沃茨魔法学校.zip
少儿编程scratch项目源代码文件案例素材-金币冲刺.zip
内容概要:本文深入探讨了HarmonyOS编译构建子系统的作用及其技术细节。作为鸿蒙操作系统背后的关键技术之一,编译构建子系统通过GN和Ninja工具实现了高效的源代码到机器代码的转换,确保了系统的稳定性和性能优化。该系统不仅支持多系统版本构建、芯片厂商定制,还具备强大的调试与维护能力。其高效编译速度、灵活性和可扩展性使其在华为设备和其他智能终端中发挥了重要作用。文章还比较了HarmonyOS编译构建子系统与安卓和iOS编译系统的异同,并展望了其未来的发展趋势和技术演进方向。; 适合人群:对操作系统底层技术感兴趣的开发者、工程师和技术爱好者。; 使用场景及目标:①了解HarmonyOS编译构建子系统的基本概念和工作原理;②掌握其在不同设备上的应用和优化策略;③对比HarmonyOS与安卓、iOS编译系统的差异;④探索其未来发展方向和技术演进路径。; 其他说明:本文详细介绍了HarmonyOS编译构建子系统的架构设计、核心功能和实际应用案例,强调了其在万物互联时代的重要性和潜力。阅读时建议重点关注编译构建子系统的独特优势及其对鸿蒙生态系统的深远影响。
嵌入式八股文面试题库资料知识宝典-奇虎360 2015校园招聘C++研发工程师笔试题.zip
嵌入式八股文面试题库资料知识宝典-腾讯2014校园招聘C语言笔试题(附答案).zip
双种群变异策略改进RWCE算法优化换热网络.pdf