`
nepxion
  • 浏览: 38305 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

(十二) Nepxion-Thunder分布式RPC集成框架 - 配置调优

阅读更多

Nepxion-Thunder(QQ 群 471164539)发布在https://github.com/Nepxion/

 

1. 本地配置

如果本地配置启动,需要在XML配置config="local"

<thunder:registry id="registry" type="zookeeper" address="localhost:2181" config="local"/>

 

新建业务工程时候,在相关路径下新建thunder-ext.properties。配置取值的优先级顺序是thunder-ext.properties->thunder.properties(在thunder.jar里)。如果配置名相同,取优先级高的值。
它是一个集成式的配置,对于通信中间件,应用哪个就配置哪个,内容如下:

# 该项只用在hessian上,即访问Hessian Servlet的Web module  
# Web module path, if that is provided as a web service
path = /thunder

# 在配置XML的时候,调用模式缺省下的默认值  
# Spring XML里不配置async,即采用默认同步的方式
# Method invoke with async false, that is a default value
async = false

# 在配置XML的时候,广播模式缺省下的默认值  
# Spring XML里不配置broadcast,即采用默认禁止广播方式
# Method invoke with broadcast false, that is a default value
broadcast = false

# 在配置XML的时候,同步超时时间缺省下的默认值  
# Spring XML里不配置同步方法的timeout,即采用默认同步超时为30秒,如果超过30秒,同步方法没返回,就抛出超时异常
# Sync method timeout, that is a default value
syncTimeout = 30 * 1000

# 在配置XML的时候,异步超时时间缺省下的默认值  
# Spring XML里不配置异步方法的timeout,即采用默认异步超时为60秒,如果超过5分钟,异步结果没回调回来,就清除异步缓存,并抛出异常
# Async method timeout, aysnc cache will be remove when timeout, that is a default value
asyncTimeout = 5 * 60 * 1000

# 异步守护线程对异步超时结果的扫描,默认10秒扫描一次,该值不能在XML里定义
# Async method scan interval, thread will start to clear timeout cache every scan interval
asyncScan = 10 * 1000

# 是否采用压缩,采用压缩其实是用少量CPU的开销,来换取网络传输的开销
# 一般来说,2KB-20KB的消息体,通过压缩传递,吞吐量TPS可以提高20%-30%;但是大数据量会增加CPU开销
# 如果采用Netty协议,它内部会有一个JdkZlib等压缩算法,可以再次压缩
# Compress transport data, maybe it works well for 2KB-20KB
compress = false

# 因网络原因(例如所有服务器挂掉)下,调用失败后,Thunder将自动采取重复调用,以保证请求不丢失。当侦测到网络原因调用失败后,会负载均衡去调用其他的服务器。  
# 该项机制,只支持Netty和Hessian。MQ出现网络原因而服务调用,会自动采取重连而阻塞进程,所以没必要实现这种机制。  
# Load Balance Configuration (used for Netty and Hessian)
# 是否需要重试,如果true,客户端将阻塞线程,等到服务端至少一台恢复;如果false,将直接抛出异常
loadBalanceRetry = true
# 重试次数
loadBalanceRetryTimes = 10000
# 每次重试的间隔时间
loadBalanceRetryDelay = 5 * 1000

# 是否需要异步异常事件发布通知
# If event notification is true, all produce and consume failure will be thrown out via an async event, so that will make the invocation do a retry 
eventNotification = true

# 调用过程中,出现异常用邮件通知
# If event notification and smtp mail notification are all true, all produce and consume failure will be sent as a mail
# 关闭邮件通知
smtpNotification = false

# 是否负载均衡信息的打印(负载均衡信息有助于判断哪台服务器被选中),开启后,可能会造成日志量大增
# Load balance log will help to indicate which server will be selected (used for Netty and Hessian)
loadBalanceLogPrint = true

# 是否传输信息的打印(传输信息有助于判断请求发往哪台服务器,从哪台服务器响应)
# Transport log will help to indicate the transport information
transportLogPrint = true

# 是否心跳信息的打印(心跳信息有助于判断Netty数据通道是否还存活),开启后,可能会造成日志量大增
# Heart beat log will help to indicate the data channel is alive or not (used for Netty)
heartBeatLogPrint = true

# 是否序列化后字节数组压缩和未压缩等长度信息的打印(长度信息有助于判断业务对象的大小,供业务部门选择是否压缩)
# Serializer log will help to indicate the byte array length
serializerLogPrint = false

# 异常通知的白名单,一旦指定,白名单里的异常将不会通过邮件发送,用逗号分隔
# Failure Notification exclusion, use "," to separate
smtpNotificationExclusion = com.nepxion.thunder.security.SecurityException
# 是否是Ssl模式
smtpSsl = true
# 邮件服务器的地址
smtpHost = smtp.qq.com
# 发件人的账户
smtpUser = *******@qq.com
# 发件人的账户密码
smtpPassword = 
# 发件人的邮件地址 
smtpMailFrom = *******@qq.com
# 收件人的邮件地址列表,用逗号分隔
smtpMailTo = *******@qq.com,*******@qq.com
# 抄送的邮件地址列表,用逗号分隔
smtpMailCC = 
# 暗送的邮件地址列表,用逗号分隔
smtpMailBCC = 

# 线程池  
# Thread Pool Configuration
# 线程隔离,一旦值为true,每个接口将对应一个线程池
# Multi thread pool
threadPoolMultiMode = false
# CPU unit
threadPoolServerCorePoolSize = 4
# CPU unit
threadPoolServerMaximumPoolSize = 8
threadPoolServerKeepAliveTime = 15 * 60 * 1000
threadPoolServerAllowCoreThreadTimeout = false
# CPU unit
threadPoolClientCorePoolSize = 4
# CPU unit
threadPoolClientMaximumPoolSize = 8
threadPoolClientKeepAliveTime = 15 * 60 * 1000
threadPoolClientAllowCoreThreadTimeout = false
# LinkedBlockingQueue, ArrayBlockingQueue, SynchronousQueue
threadPoolQueue = LinkedBlockingQueue
# CPU unit (Used for LinkedBlockingQueue or ArrayBlockingQueue)
threadPoolQueueCapacity = 1024
# BlockingPolicyWithReport, CallerRunsPolicyWithReport, AbortPolicyWithReport, RejectedPolicyWithReport, DiscardedPolicyWithReport
# BlockingPolicyWithReport :使用阻塞生产者的饱和策略,不抛弃任务,也不抛出异常,当队列满时改为调用BlockingQueue.put来实现生产者的阻塞
# CallerRunsPolicyWithReport :使用Caller-Runs(调用者执行)饱和策略,不抛弃任务,也不抛出异常,而是将当前任务回退到发起这个调用者执行的线程所在的上级线程去执行
# AbortPolicyWithReport :任务饱和时, 抛弃任务,抛出异常
# RejectedPolicyWithReport :如果该任务实现了RejectedRunnable接口,那么交给用户去实现拒绝服务的逻辑,否则以FIFO的方式抛弃队列中一部分现有任务,再添加新任务
# DiscardedPolicyWithReport :任务饱和时以FIFO的方式抛弃队列中一部分现有任务,再添加新任务
threadPoolRejectedPolicy = BlockingPolicyWithReport

# 对象池,主要是用于FST快速序列化实现  
# FST Object Pool Configuration
# CPU unit
fstObjectPoolMaxTotal = 64
# CPU unit
fstObjectPoolMaxIdle = 32
# CPU unit
fstObjectPoolMinIdle = 16
fstObjectPoolMaxWaitMillis = 3000
fstObjectPoolTimeBetweenEvictionRunsMillis = 1000 * 60 * 15
fstObjectPoolMinEvictableIdleTimeMillis = 1000 * 60 * 30
fstObjectPoolSoftMinEvictableIdleTimeMillis = 1000 * 60 * 30
fstObjectPoolBlockWhenExhausted = true
fstObjectPoolLifo = true
fstObjectPoolFairness = false

# Netty调优  
# Netty Configuration
nettySoBacklog = 128
nettySoSendBuffer = 64 * 1024
nettySoReceiveBuffer = 64 * 1024
nettyWriteBufferHighWaterMark = 32 * 1024
nettyWriteBufferLowWaterMark = 8 * 1024
nettyMaxMessageSize = 1 * 1024 * 1024
nettyWriteIdleTime = 90 * 1000
nettyReadIdleTime = 60 * 1000
nettyAllIdleTime = 45 * 1000
nettyWriteTimeout = 5 * 1000
nettyReadTimeout = 5 * 1000
nettyConnectTimeout = 10 * 1000
nettyReconnectDelay = 1000

# Hessian调优  
# Hessian Configuration
hessianReadTimeout = 30 * 1000
hessianConnectTimeout = 10 * 1000

# Redis调优  
# Redis Configuration
# CPU unit
redisObjectPoolMaxTotal = 30
# CPU unit
redisObjectPoolMaxIdle = 10
# CPU unit
redisObjectPoolMinIdle = 10
redisObjectPoolMaxWaitMillis = 1000 * 3
redisObjectPoolTimeBetweenEvictionRunsMillis = 1000 * 30
redisObjectPoolMinEvictableIdleTimeMillis = 1000 * 60
redisObjectPoolSoftMinEvictableIdleTimeMillis = 1000 * 60
redisObjectPoolBlockWhenExhausted = true
redisObjectPoolLifo = true
redisObjectPoolFairness = false
redisSoTimeout = 5 * 1000
redisConnectionTimeout = 5 * 1000
redisDataExpiration = 15 * 24 * 60 * 1000
# Setinel parameters
redisReconnectionWait = 5
redisDatabase = 0
# Cluster parameters
redisMaxRedirections = 5

# Splunk调优
# Splunk Configuration
splunkMaximumTime = 60

# 消息队列调优  
# Kafka Configuration
kafka.producer.acks = all
kafka.producer.linger.ms = 0
kafka.producer.retries = 0
kafka.producer.buffer.memory = 33554432
kafka.producer.send.buffer.bytes = 131072
kafka.producer.receive.buffer.bytes = 32768
kafka.producer.max.request.size = 1048576
kafka.producer.batch.size = 16384
kafka.producer.timeout.ms = 30000
kafka.producer.request.timeout.ms = 30000
kafka.producer.connections.max.idle.ms = 540000
kafka.producer.reconnect.backoff.ms = 50
kafka.producer.retry.backoff.ms = 100
kafka.producer.max.block.ms = 60000
kafka.producer.max.in.flight.requests.per.connection = 5
kafka.producer.metadata.max.age.ms = 300000
kafka.producer.metadata.fetch.timeout.ms = 60000

kafka.consumer.server.poll.timeout.ms = 1000
kafka.consumer.client.poll.timeout.ms = 1000
kafka.consumer.enable.auto.commit = true
kafka.consumer.auto.offset.reset = latest
kafka.consumer.send.buffer.bytes = 131072
kafka.consumer.receive.buffer.bytes = 32768
kafka.consumer.max.partition.fetch.bytes = 1048576
kafka.consumer.fetch.min.bytes = 1024
kafka.consumer.fetch.max.wait.ms = 500
kafka.consumer.auto.commit.interval.ms = 10000
kafka.consumer.heartbeat.interval.ms = 3000
kafka.consumer.session.timeout.ms = 30000
kafka.consumer.request.timeout.ms = 40000
kafka.consumer.connections.max.idle.ms = 540000
kafka.consumer.reconnect.backoff.ms = 50
kafka.consumer.retry.backoff.ms = 100
kafka.consumer.metadata.max.age.ms = 300000

# MQ Common Configuration (used for ActiveMQ and Tibco)
mqRetryNotificationDelay = 5 * 1000
mqReconnectOnException = true

# CacheConnectionFactory Configuration (used for ActiveMQ and Tibco)
mqSessionCacheSize = 20
mqCacheConsumers = true
mqCacheProducers = true

# PoolConnectionFactory Configuration (used for ActiveMQ and Tibco)
mqMaxConnections = 20
mqMaximumActiveSessionPerConnection = 100
mqIdleTimeout = 30 * 1000
mqExpiryTimeout = 0
mqBlockIfSessionPoolIsFull = true
mqBlockIfSessionPoolIsFullTimeout = -1
mqTimeBetweenExpirationCheckMillis = -1
mqCreateConnectionOnStartup = true

# DefaultMessageListenerContainer Configuration (used for ActiveMQ and Tibco)
mqConcurrentConsumers = 10
mqMaxConcurrentConsumers = 1
mqReceiveTimeout = 1000
mqRecoveryInterval = 5000
mqIdleConsumerLimit = 1
mqIdleTaskExecutionLimit = 1
mqCacheLevel = 4
mqAcceptMessagesWhileStopping = false

# Apache HttpComponent调优,作为辅助组件,支持同步和异步两种方式,可被外部调用
# Apache Configuration
apacheBacklogSize = 128
apacheSendBufferSize = 64 * 1024
apacheReceiveBufferSize = 64 * 1024
apacheSoTimeout = 5 * 1000
apacheConnectTimeout = 5 * 1000
# CPU unit
apacheMaxTotal = 32

# Zookeeper调优
# Zookeeper Configuration
zookeeperSessionTimeout = 15 * 1000
zookeeperConnectTimeout = 15 * 1000
zookeeperConnectWaitTime = 1000


# Zookeeper的连接配置,效果等同于Spring XML的<thunder:registry ... address="localhost:2181".../>
# Zookeeper Connection Configuration
zookeeperAddress = localhost:2181

# Redis的哨兵连接配置,用于Netty和Hessian的发布/订阅功能,以及日志缓存上
# Redis Sentinel Connection Configuration
redisSentinel = 192.168.126.151:16379;192.168.126.151:26379;192.168.126.151:36379
redisMasterName = mymaster
redisClientName =  
redisPassword = 

# Redis的集群连接配置,用于日志缓存上,哨兵和集群配置最好两者选其一,推荐用哨兵配置
# Redis Cluster Connection Configuration
# redisCluster = 192.168.126.131:7001;192.168.126.131:7002;192.168.126.131:7003;192.168.126.131:7004;192.168.126.131:7005;192.168.126.131:7006

# Splunk日志服务器配置
# Splunk Connection Configuration
splunkHost = localhost
splunkPort = 8089
splunkUserName = admin
splunkPassword = admin

# Kafka的连接配置
# Kafka Connection Configuration
kafka-1.kafka.producer.bootstrap.servers = localhost:9092
kafka-1.kafka.consumer.bootstrap.servers = localhost:9092

# ActiveMQ的连接配置
# ActiveMQ Connection Configuration
activeMQ-1.mqUrl = failover://(tcp://localhost:61616)?initialReconnectDelay=1000&jms.prefetchPolicy.all=5
# activeMQ-1.mqUrl = failover://(tcp://broker1:61616,tcp://broker2:61616)?randomize=true
# SingleConnectionFactory, CachingConnectionFactory, PooledConnectionFactory
activeMQ-1.mqConnectionFactoryType = CachingConnectionFactory
activeMQ-1.mqUserName = admin
activeMQ-1.mqPassword = admin
# activeMQ-1.mqJndiName = ConnectionFactory

# Tibco的连接配置
# Tibco Connection Configuration
tibco-1.mqUrl = tcp://localhost:7222
# SingleConnectionFactory, CachingConnectionFactory, PooledConnectionFactory
tibco-1.mqConnectionFactoryType = CachingConnectionFactory
tibco-1.mqUserName = admin
tibco-1.mqPassword =
tibco-1.mqJndiName = seashellConnectionFactory

tibco-2.mqUrl = tcp://localhost:7222
# SingleConnectionFactory, CachingConnectionFactory, PooledConnectionFactory
tibco-2.mqConnectionFactoryType = CachingConnectionFactory
tibco-2.mqUserName = admin
tibco-2.mqPassword =
tibco-2.mqJndiName = FTQueueConnectionFactory


 2. 远程配置

如果本地配置启动,需要在XML配置config="remote"

<thunder:registry id="registry" type="zookeeper" address="localhost:2181" config="remote"/>
配置取值的优先级顺序是远程配置->thunder-ext.properties->thunder.properties(在thunder.jar里)。
如何进行远程配置,参照(九) Thunder分布式RPC框架 - 治理中心
分享到:
评论
4 楼 nepxion 2016-01-14  
目前只支持Java
adanz 写道
好東東,是否支持其它語言客戶端?

3 楼 adanz 2016-01-13  
好東東,是否支持其它語言客戶端?
2 楼 nepxion 2015-12-02  
感谢捧场,还在不断完善中
1 楼 tairan_0729 2015-12-01  
写的很好,正在拜读中

相关推荐

    基于Java的Thunder分布式RPC框架设计源码

    Nepxion Thunder是一个基于Java的分布式RPC框架,集成了Netty、Hessian、Kafka、ActiveMQ、Tibco、Zookeeper、Redis、Spring Web MVC、Spring Boot和Docker等技术。它支持多协议、多组件和多序列化,为开发者提供了...

    协程式驱动框架Nepxion-Coroutine.zip

    Coroutine是基于Kilim/Promise JDeferred的协程式驱动框架,基于Apache Zookeeper的分布式规则存储和动态规则变更通知。 主要特性: 1. 基于微服务框架理念设计 2. 支持同步/异步调用 3. 支持串行/并行调用 4....

    Thunder::high_voltage: Nepxion Thunder is a distribution RPC framework based on Netty + Hessian + Kafka + ActiveMQ + Tibco + Zookeeper + Redis + Spring Web MVC + Spring Boot + Docker 多协议、多组件、多序列化的分布式RPC调用框架

    Nepxion Thunder是一款基于Netty + Hessian + Kafka + ActiveMQ + Tibco + Zookeeper(Curator Framework) + Redis + FST + Spring + Spring Web MVC + Spring Boot + Docker分布式RPC调用框架。架构思想主要是来自...

    yinheli/docker-thunder-xware:latest 镜像打包下载

    yinheli/docker-thunder-xware:latest 镜像打包下载 群晖 NAS DSM 系统,只要三步使用 Docker 安装迅雷远程下载

    基于Kilim、Promise JDeferred、Zookeeper和Spring Boot的协程分布式调用聚合框架设计源码

    该项目是一款基于Kilim、Promise JDeferred、Zookeeper和Spring Boot技术的协程驱动分布式...该框架支持Nepxion Thunder、Dubbo和Motan等RPC调用的集成,并通过规则配置实现调用聚合,适用于构建高性能的分布式系统。

    Go-Thunder⚡️一个Go框架用于快速构建强大的graphql服务

    在压缩包"thunder-master"中,包含了Thunder框架的源码和其他相关资源。开发者可以通过查看源码,了解其内部实现原理,也可以直接使用它来快速搭建自己的GraphQL服务。在实际开发过程中,结合Go语言的标准库和第三方...

    wine-thunder_0.6-2_all.deb

    wine-thunder_0.6-2_all.deb用于在linux系统下,使用wine直接按装的迅雷软件,实现高速下载,在ubunut,fedora等linux版本中,实现直接点击安装

    开源项目-omeid-thunder.zip

    "thunder-master"这个压缩包子文件名可能代表项目的主分支或主代码库,这在Git等版本控制系统中很常见,"master"通常指的是默认分支,存放着项目的最新稳定版本。解压后,用户可以访问到项目的源代码、文档、构建...

    Go-Thunder是BoltDB的交互式Shell

    例如,在日志记录、配置管理或者简单的状态存储场景中,BoltDB的轻量级特性和Go-Thunder的交互性可以提供高效且易于维护的解决方案。同时,对于学习Go语言和数据库原理的初学者,Go-Thunder也是很好的实践平台,能够...

    A10-Thunder_1030S方案白皮书.pdf

    A10-Thunder_1030S方案白皮书.pdf

    系统工具-文件下载-thunder_3.4.0.4338.zip

    标题中的“系统工具-文件下载-thunder_3.4.0.4338.zip”表明这是一款系统工具,具体来说是与文件下载相关的。这里的“thunder”很可能指的是迅雷,一个在中国广为人知的下载管理软件。版本号“3.4.0.4338”指示这是...

    home-work-thunder

    【压缩包子文件的文件名称列表】"thunder-oms" 这个文件名可能代表“Thunder Operation Management System”(迅雷运营管理系统),或者是一种特定的模块或服务。它可能包含了项目的源代码、配置文件、测试脚本等,...

    A10-Thunder_6430S方案白皮书.pdf

    A10-Thunder_6430S方案白皮书.pdf

    开源项目-muesli-thunder.zip

    在使用Thunder时,用户应首先下载并解压“muesli-thunder.zip”文件,得到“thunder-master”目录。然后按照项目提供的安装指南编译并安装Thunder,最后通过命令行启动Thunder,开始探索和操作BoltDB数据库。对于...

    A10-Thunder_930方案白皮书.pdf

    A10 Thunder 930方案白皮书 A10 Thunder 930是A10 Networks公司推出的统一应用服务网关(UASG),采用64位系统、1U硬件,提供了极具性价比的解决方案。该设备基于A10极具扩展性的灵活高级核心操作系统(ACOS)架构...

    docker-thunder-xware:Docker雷鸣般的倒塌

    docker pull yinheli/docker-thunder-xware:latest 创建一个下载目录. 用于挂载卷 mkdir data 运行 docker run -d \ --name=xware \ --net=host \ -v $(pwd)/data:/app/TDDOWNLOAD \ yinheli/docker-thunder-...

    3D-Thunder-Lightning.zip

    3D-Thunder-Lightning.zip,受航母指令启发的开源未来动作飞行模拟器游戏,3D建模使用专门的软件来创建物理对象的数字模型。它是3D计算机图形的一个方面,用于视频游戏,3D打印和VR,以及其他应用程序。

    系统工具-文件下载-Thunderbird91.0b4.zip

    Thunderbird是一款由Mozilla基金会开发的开源邮件客户端,它集成了电子邮件、新闻组、RSS阅读器和日历功能,为用户提供了一站式的通信解决方案。Thunderbird91.0b4是该软件的一个版本,其中“91.0b4”表示的是版本号...

    A10-Thunder-5430S方案白皮书

    在《A10 Thunder 5430S方案白皮书》中,你将了解到Thunder 5430S如何通过这些特性实现高效的负载均衡,以及如何部署和配置以满足特定的业务需求。文档可能还涵盖了设备的硬件规格、性能指标、管理和监控工具,以及与...

    Android代码-Thunder

    Thunder Android OkHttp util package let response callback at MainThread(UIThread), also it‘s lifecycle safety. ⚠️ Thunder‘s code is based on SugarTask(Very nice code

Global site tag (gtag.js) - Google Analytics