`
qianshangding
  • 浏览: 127871 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

Flume HDFS Sink使用及源码分析

 
阅读更多

HDFS Sink介绍

Flume导入数据HDFS,目前只支持创建序列化(sequence)文件和文本(text)文件。还支持这两个文件的压缩。文件可以根据运行的时间,数据的大小和时间的数量来进行周期性的滚动(关闭当前文件产生新的文件)。也可以根据数据属性分区,例如根据时间戳或机器分区。HDFS目录路径可以包含格式化的转义字符,生成目录路径可以通过格式化转移字符(escape sequences),HDFS sink通过这些转义字符生成一个目录或者文件去存储Event。当然在Flume中使用HDFS Sink的话,需要添加HDFS相关的Jar,这样Flume就能使用Hadoop的jar和Hadoop集群交互。注:Hadoop必须支持sync()。

以下是HDFS Sink支持的转义字符:

名称 描述
%{host} 替代Event Header被命名为“host”的值,支持任意的Header name。
%t Unix毫秒时间
%a 短的周名称,例如:Mon, Tue, ...
%A 周名称全称,例如:Monday, Tuesday, ...
%b 短的月名称,例如:(Jan, Feb, ...
%B 月名称全称,例如:January, February, ...
%c 日期和时间,例如:Thu Mar 3 23:05:25 2005
%d 每个月的某一天,例如:01 - 31
%e 每个月的某一天(没有填充0)例如:1,2,3,4---31
%D 日期;像:%m/%d/%y
%H 小时(00..23)
%I 小时(01..12)
%j 每个年的某一天,例如:001..366
%k 小时,例如:0..23
%m 月份,例如:01..12
%n 月份,例如:1..12
%M 分钟,例如:00..59
%p am 或 pm
%s 从1970-01-01 00:00:00 UTC到现在的毫秒数
%S 秒,例如:00..59
%y 两位数的年份,例如:00..99
%Y 年份,例如:2010
%z +hhmm 数字时区,例如:-0400
文件在使用的时候以".tmp"为后缀,一旦文件关闭,扩展名将被移除。
注:跟时间相关的转移序列,Key为“timestamp”必须存在在Event的Headers中(除非hdfs.useLocalTimeStamp设置为true)
NameDefaultDescription
channel

type 组件的名称,必须为:HDFS
hdfs.path HDFS目录路径,例如:hdfs://namenode/flume/webdata/
hdfs.filePrefix FlumeData HDFS目录中,由Flume创建的文件前缀。
hdfs.fileSuffix 追加到文件的后缀,例如:.txt
hdfs.inUsePrefix 文件正在写入时的前缀。
hdfs.inUseSuffix .tmp 文件正在写入时的后缀。
hdfs.rollInterval 30 当前写入的文件滚动间隔,默认30秒生成一个新的文件 (0 = 不滚动)
hdfs.rollSize 1024 以文件大小触发文件滚动,单位字节(0 = 不滚动)
hdfs.rollCount 10
以写入的事件数触发文件滚动。(0 = 不滚动)
hdfs.idleTimeout 0 超时多久以后关闭无效的文件。(0 = 禁用自动关闭的空闲文件)但是还是可能因为网络等多种原因导致,正在写的文件始终没有关闭,从而产生tmp文件
hdfs.batchSize 100 有多少Event后,写到文件才刷新到HDFS。
hdfs.codeC 压缩编解码器,可以使用:gzip, bzip2, lzo, lzop, snappy
hdfs.fileType SequenceFile 文件格式:通常使用SequenceFile(默认),DataStream或者CompressedStream
(1)DataStream不能压缩输出文件,请不用设置hdfs.codeC编码解码器。
(2)CompressedStream要求设置hdfs.codeC来制定一个有效的编码解码器。
hdfs.maxOpenFiles 5000 HDFS中允许打开文件数据,如果数量超过了,最老的文件将被关闭。
hdfs.callTimeout 10000 允许HDFS操作的毫秒数,例如:open,write, flush, close。如果很多HFDS操作超时,这个配置应该增大。
hdfs.threadsPoolSize 10

每个HDFS sink的HDFS的IO操作线程数(例如:open,write)

hdfs.rollTimerPoolSize 1 每个HDFS sink调度定时文件滚动的线程数。
hdfs.kerberosPrincipal 安全访问HDFS Kerberos的主用户。
hdfs.kerberosKeytab 安全访问HDFSKerberos keytab
hdfs.proxyUser


hdfs.round false 时间戳应该被四舍五入。(如果为true,会影响所有的时间,除了t%)
hdfs.roundValue 1 四舍五入的最高倍数(单位配置在hdfs.roundUnit),但是要小于当前时间。
hdfs.roundUnit second 四舍五入的单位,包含:second,minuteorhour.
hdfs.timeZone Local Time 时区的名称,主要用来解决目录路径。例如:America/Los_Angeles
hdfs.useLocalTimeStamp false 使用本地时间替换转义字符。 (而不是event header的时间戳)
hdfs.closeTries 0 在发起一个关闭命令后,HDFS sink必须尝试重命名文件的次数。如果设置为1,重命名失败后,HDFS sink不会再次尝试重命名该文件,这个文件处于打开状态,并且用.tmp作为扩展名。如果为0,Sink会一直尝试重命名,直至重命名成功。如果文件 失败,这个文件可能一直保持打开状态,但是这种情况下数据是完整的。文件将会在Flume下次重启时被关闭。
hdfs.retryInterval 180 在几秒钟之间连续尝试关闭文件。每个关闭请求都会有多个RPC往返Namenode,因此设置的太低可能导致Namenode超负荷,如果设置0或者更小,如果第一次尝试失败的话,该Sink将不会尝试关闭文件。并且把文件打开,或者用“.tmp”作为扩展名。
serializer TEXT 可能的选项包括avro_event或继承了EventSerializer.Builder接口的类名。
serializer.*



关于round:
a1.sinks.k1.hdfs.round=true
a1.sinks.k1.hdfs.roundValue=10
a1.sinks.k1.hdfs.roundUnit=minute
上面的配置将四舍五入配置到10分钟,例如:一个事件的时间戳是11:54:34 AM, June 12, 2012 将导致hdfs的路径变为:/flume/events/2012-06-12/1150/00

源码分析

configure(Context context):主要用于加载配置文件。

public void configure(Context context) {
    this.context = context;
    //HDFS目录路径,例如:hdfs://namenode/flume/webdata/,也可以用/flume/webdata/,这样要把Hadoop的配置文件放到classpath
    filePath = Preconditions.checkNotNull(
        context.getString("hdfs.path"), "hdfs.path is required");
    //HDFS目录中,由Flume创建的文件前缀。
   fileName = context.getString("hdfs.filePrefix", defaultFileName);
    //文件后缀
   this.suffix = context.getString("hdfs.fileSuffix", defaultSuffix);
    //文件正在写入时的前缀。
   inUsePrefix = context.getString("hdfs.inUsePrefix", defaultInUsePrefix);//文件正在写入时的后缀。
    inUseSuffix = context.getString("hdfs.inUseSuffix", defaultInUseSuffix);
    //时区的名称,主要用来解决目录路径。例如:America/Los_Angeles
   String tzName = context.getString("hdfs.timeZone");
    timeZone = tzName == null ? null : TimeZone.getTimeZone(tzName);
    rollInterval = context.getLong("hdfs.rollInterval", defaultRollInterval);//当前写入的文件滚动间隔,默认30秒生成一个新的文件 (0 = 不滚动)
    rollSize = context.getLong("hdfs.rollSize", defaultRollSize);//以文件大小触发文件滚动,单位字节(0 = 不滚动)
    rollCount = context.getLong("hdfs.rollCount", defaultRollCount);
    //有多少Event后,写到文件才刷新到HDFS。
    batchSize = context.getLong("hdfs.batchSize", defaultBatchSize);
    //超时多久以后关闭无效的文件。(0 = 禁用自动关闭的空闲文件)但是还是可能因为网络等多种原因导致,正在写的文件始终没有关闭,从而产生tmp文件
    idleTimeout = context.getInteger("hdfs.idleTimeout", 0);
    //压缩编解码器,可以使用:gzip, bzip2, lzo, lzop, snappy
    String codecName = context.getString("hdfs.codeC");
   //文件格式:通常使用SequenceFile(默认), DataStream 或者 CompressedStrea
    //(1)DataStream不能压缩输出文件,请不用设置hdfs.codeC编码解码器。
    //(2)CompressedStream要求设置hdfs.codeC来制定一个有效的编码解码器。
    fileType = context.getString("hdfs.fileType", defaultFileType);
    //HDFS中允许打开文件的数据,如果数量超过了,最老的文件将被关闭。
    maxOpenFiles = context.getInteger("hdfs.maxOpenFiles", defaultMaxOpenFiles);
    //允许HDFS操作的毫秒数,例如:open,write, flush, close。如果很多HFDS操作超时,这个配置应该增大。
    callTimeout = context.getLong("hdfs.callTimeout", defaultCallTimeout);
    //允许HDFS操作的毫秒数,例如:open,write, flush, close。如果很多HFDS操作超时,这个配置应该增大。
    //每个HDFS sink的HDFS的IO操作线程数(例如:open,write) 
    threadsPoolSize = context.getInteger("hdfs.threadsPoolSize", defaultThreadPoolSize);
    //每个HDFS sink调度定时文件滚动的线程数。
    rollTimerPoolSize = context.getInteger("hdfs.rollTimerPoolSize", defaultRollTimerPoolSize);
    //每个HDFS sink调度定时文件滚动的线程数。
    String kerbConfPrincipal = context.getString("hdfs.kerberosPrincipal");
    //安全认证
 String kerbKeytab = context.getString("hdfs.kerberosKeytab");
 String proxyUser = context.getString("hdfs.proxyUser");
 tryCount = context.getInteger("hdfs.closeTries", defaultTryCount);
 if(tryCount <= 0) {
 LOG.warn("Retry count value : " + tryCount + " is not " +
 "valid. The sink will try to close the file until the file " +
 "is eventually closed.");
 tryCount = defaultTryCount;
 }
 retryInterval = context.getLong("hdfs.retryInterval",
 defaultRetryInterval);
 if(retryInterval <= 0) {
 LOG.warn("Retry Interval value: " + retryInterval + " is not " +
 "valid. If the first close of a file fails, " +
 "it may remain open and will not be renamed.");
 tryCount = 1;
 }

 Preconditions.checkArgument(batchSize > 0,
 "batchSize must be greater than 0");
 if (codecName == null) {
 codeC = null;
 compType = CompressionType.NONE;
 } else {
 codeC = getCodec(codecName);
 // TODO : set proper compression type
 compType = CompressionType.BLOCK;
 }

 // Do not allow user to set fileType DataStream with codeC together
 // To prevent output file with compress extension (like .snappy)
 if(fileType.equalsIgnoreCase(HDFSWriterFactory.DataStreamType)
 && codecName != null) {
 throw new IllegalArgumentException("fileType: " + fileType +
 " which does NOT support compressed output. Please don't set codeC" +
 " or change the fileType if compressed output is desired.");
 }

 if(fileType.equalsIgnoreCase(HDFSWriterFactory.CompStreamType)) {
 Preconditions.checkNotNull(codeC, "It's essential to set compress codec"
 + " when fileType is: " + fileType);
 }

 // get the appropriate executor
 this.privExecutor = FlumeAuthenticationUtil.getAuthenticator(
 kerbConfPrincipal, kerbKeytab).proxyAs(proxyUser);



    //时间戳应该被四舍五入。(如果为true,会影响所有的时间,除了t%)
 needRounding = context.getBoolean("hdfs.round", false);

 if(needRounding) {
      //四舍五入的单位
 String unit = context.getString("hdfs.roundUnit", "second");
 if (unit.equalsIgnoreCase("hour")) {
 this.roundUnit = Calendar.HOUR_OF_DAY;
 } else if (unit.equalsIgnoreCase("minute")) {
 this.roundUnit = Calendar.MINUTE;
 } else if (unit.equalsIgnoreCase("second")){
 this.roundUnit = Calendar.SECOND;
 } else {
 LOG.warn("Rounding unit is not valid, please set one of" +
 "minute, hour, or second. Rounding will be disabled");
 needRounding = false;
 }
      //四舍五入的最高倍数
 this.roundValue = context.getInteger("hdfs.roundValue", 1);
 if(roundUnit == Calendar.SECOND || roundUnit == Calendar.MINUTE){
 Preconditions.checkArgument(roundValue > 0 && roundValue <= 60,
 "Round value" +
 "must be > 0 and <= 60");
 } else if (roundUnit == Calendar.HOUR_OF_DAY){
 Preconditions.checkArgument(roundValue > 0 && roundValue <= 24,
 "Round value" +
 "must be > 0 and <= 24");
 }
 }

 this.useLocalTime = context.getBoolean("hdfs.useLocalTimeStamp", false);
 if(useLocalTime) {
 clock = new SystemClock();
 }

 if (sinkCounter == null) {
      //<span style="color:#000000;">计数器</span>
 sinkCounter = new SinkCounter(getName());
 }
 }
    































































































































































































































































按照Flume的生命周期,先启动start方法:

  @Override
  public void start() {
    String timeoutName = "hdfs-" + getName() + "-call-runner-%d";
    //线程池用于event写入HDFS文件
    callTimeoutPool = Executors.newFixedThreadPool(threadsPoolSize,
            new ThreadFactoryBuilder().setNameFormat(timeoutName).build());

    String rollerName = "hdfs-" + getName() + "-roll-timer-%d";
    //该线程池用来滚动文件
    timedRollerPool = Executors.newScheduledThreadPool(rollTimerPoolSize,
            new ThreadFactoryBuilder().setNameFormat(rollerName).build());
    //该LinkedHashMap用来存储文件的绝对路径以及对应的BucketWriter
    this.sfWriters = new WriterLinkedHashMap(maxOpenFiles);
    sinkCounter.start();
    super.start();
  }
所有的Event,经Source后发送的Channel,再由Channel传入到Sink,主要调用Sink的process方法实现事务:

public Status process() throws EventDeliveryException {
    Channel channel = getChannel();//获取Channel
    Transaction transaction = channel.getTransaction();//获取事务
    List<BucketWriter> writers = Lists.newArrayList();//初始化BucketWriter列表,BucketWriter是操作HDFS主类。
    transaction.begin();
    try {
      int txnEventCount = 0;
      for (txnEventCount = 0; txnEventCount < batchSize; txnEventCount++) {//批量处理
        Event event = channel.take();//获取Event
        if (event == null) {
          break;
        }

        // reconstruct the path name by substituting place holders
        String realPath = BucketPath.escapeString(filePath, event.getHeaders(),
            timeZone, needRounding, roundUnit, roundValue, useLocalTime);//格式化HDFS路径,根据转义字符
        String realName = BucketPath.escapeString(fileName, event.getHeaders(),
          timeZone, needRounding, roundUnit, roundValue, useLocalTime);//格式化文件名称,根据转义字符

        //写入HDFS的绝对路径
        String lookupPath = realPath + DIRECTORY_DELIMITER + realName;
        BucketWriter bucketWriter;
        HDFSWriter hdfsWriter = null;
        // Callback to remove the reference to the bucket writer from the
        // sfWriters map so that all buffers used by the HDFS file
        // handles are garbage collected.
        WriterCallback closeCallback = new WriterCallback() {
          @Override
          public void run(String bucketPath) {
            LOG.info("Writer callback called.");
            synchronized (sfWritersLock) {
              sfWriters.remove(bucketPath);
            }
          }
        };
        synchronized (sfWritersLock) {
          //根据HDFS的绝对路径获取对应的BucketWriter对象
          bucketWriter = sfWriters.get(lookupPath);
          // we haven't seen this file yet, so open it and cache the handle
          if (bucketWriter == null) {
            //初始化BuchetWriter对象
            hdfsWriter = writerFactory.getWriter(fileType);
            bucketWriter = initializeBucketWriter(realPath, realName,
              lookupPath, hdfsWriter, closeCallback);
            //放入Map
            sfWriters.put(lookupPath, bucketWriter);
          }
        }

        // track the buckets getting written in this transaction
        if (!writers.contains(bucketWriter)) {
          //如果BucketWriter列表没有正在写的文件——bucketWriter,则加入
          writers.add(bucketWriter);
        }

        // Write the data to HDFS
        try {
          //将event写入bucketWriter对应的文件中
          bucketWriter.append(event);
        } catch (BucketClosedException ex) {
          LOG.info("Bucket was closed while trying to append, " +
            "reinitializing bucket and writing event.");
          hdfsWriter = writerFactory.getWriter(fileType);
          bucketWriter = initializeBucketWriter(realPath, realName,
            lookupPath, hdfsWriter, closeCallback);
          synchronized (sfWritersLock) {
            sfWriters.put(lookupPath, bucketWriter);
          }
          bucketWriter.append(event);
        }
      }

      if (txnEventCount == 0) {
        //这次事务没有处理任何event
        sinkCounter.incrementBatchEmptyCount();
      } else if (txnEventCount == batchSize) {
        //一次处理batchSize个event
        sinkCounter.incrementBatchCompleteCount();
      } else {
        //channel中剩余的events不足batchSize
        sinkCounter.incrementBatchUnderflowCount();
      }

      // flush all pending buckets before committing the transaction
      //获取List里面的BucketWriter的所有数据都刷新到HDFS
      for (BucketWriter bucketWriter : writers) {
        //如果使用转义字符生成文件名或路径,可能还没有满足其他滚动生成新文件的条件,就有新文件产生,
        //在这种情况下,例如为hdfs.idleTimeout=0,那么就可能会在HDFS中出现很多.tmp后缀的文件。因为调用flush没有关闭该文件。
        bucketWriter.flush();
      }
      //提交事务
      transaction.commit();

      if (txnEventCount < 1) {
        return Status.BACKOFF;
      } else {
        sinkCounter.addToEventDrainSuccessCount(txnEventCount);
        return Status.READY;
      }
    } catch (IOException eIO) {
      transaction.rollback();//事务回滚
      LOG.warn("HDFS IO error", eIO);
      return Status.BACKOFF;
    } catch (Throwable th) {
      transaction.rollback();
      LOG.error("process failed", th);
      if (th instanceof Error) {
        throw (Error) th;
      } else {
        throw new EventDeliveryException(th);
      }
    } finally {
      transaction.close();//关闭事务
    }
  }

HDFS Sink流程分析:

1,通过configure(Context context)和start()方法初始化Sink

2,SinkRunner的线程调用process()方法,循环处理批量的Event,如果Event为null,就跳出循环。

3,有Event数据,先格式化HDFS的文件路径和文件名,即:realPath和realName。realPath+realName就是完整HDFS路径:lookupPath,然后根据lookupPath获取BucketWriter对象。

4,BucketWriter对象不存在,则先构建根据fileType构建一个HDFSWriter 对象。然后初始化BucketWriter对象。最后将对象放到sfWriters中,表示正在写的文件。

  public HDFSWriter getWriter(String fileType) throws IOException {
    if (fileType.equalsIgnoreCase(SequenceFileType)) {
      //通过SequenceFile.Writer写入文件
      return new HDFSSequenceFile();
    } else if (fileType.equalsIgnoreCase(DataStreamType)) {
      //通过FSDataOutputStream
      return new HDFSDataStream();
    } else if (fileType.equalsIgnoreCase(CompStreamType)) {
      return new HDFSCompressedDataStream();
    } else {
      throw new IOException("File type " + fileType + " not supported");
    }
  }

HDFSSequenceFile:configure(context)方法会首先获取写入格式writeFormat即参数"hdfs.writeFormat",org.apache.flume.sink.hdfs.SequenceFileSerializerType定义了一下三个:

  Writable(HDFSWritableSerializer.Builder.class),//默认的
  Text(HDFSTextSerializer.Builder.class),
  Other(null);

再获取是否使用HDFS本地文件系统"hdfs.useRawLocalFileSystem",默认是flase不使用;然后获取writeFormat的所有配置信息serializerContext;然后根据writeFormat和serializerContext构造SequenceFileSerializer的对象serializer。

  HDFSDataStream:configure(context)方法先获取serializerType类型,默认是TEXT(BodyTextEventSerializer.Builder.class),其他的还包含:

public enum EventSerializerType {
  TEXT(BodyTextEventSerializer.Builder.class),
  HEADER_AND_TEXT(HeaderAndBodyTextEventSerializer.Builder.class),
  AVRO_EVENT(FlumeEventAvroEventSerializer.Builder.class),
  OTHER(null);

再获取是否使用HDFS本地文件系统"hdfs.useRawLocalFileSystem",默认是flase不使用;最后获取serializer的所有配置信息serializerContext。serializer的实例化在HDFSDataStream.doOpen(Configuration conf, Path dstPath, FileSystem hdfs)方法中实现的。

HDFSCompressedDataStream:configure和HDFSDataStream.configure(context)类似,serializerType的类型也一样。serializer的实例化是在HDFSCompressedDataStream.open(String filePath, CompressionCodec codec, CompressionType cType)方法中实现。

5,bucketWriter实例化后存放到sfWriters中,并且判断是否在writers变量的List中,如果不存在,就放入List,这样后面就可以对bucketWriter统一flush了。

6,bucketWriter.append(event);

  public synchronized void append(final Event event)
          throws IOException, InterruptedException {
    checkAndThrowInterruptedException();//检查当前线程是否被中断
    // If idleFuture is not null, cancel it before we move forward to avoid a
    // close call in the middle of the append.
    if(idleFuture != null) {
      idleFuture.cancel(false);
      // There is still a small race condition - if the idleFuture is already
      // running, interrupting it can cause HDFS close operation to throw -
      // so we cannot interrupt it while running. If the future could not be
      // cancelled, it is already running - wait for it to finish before
      // attempting to write.
      if(!idleFuture.isDone()) {
        try {
          idleFuture.get(callTimeout, TimeUnit.MILLISECONDS);
        } catch (TimeoutException ex) {
          LOG.warn("Timeout while trying to cancel closing of idle file. Idle" +
            " file close may have failed", ex);
        } catch (Exception ex) {
          LOG.warn("Error while trying to cancel closing of idle file. ", ex);
        }
      }
      idleFuture = null;
    }

    // If the bucket writer was closed due to roll timeout or idle timeout,
    // force a new bucket writer to be created. Roll count and roll size will
    // just reuse this one
    if (!isOpen) {
      if (closed) {
        throw new BucketClosedException("This bucket writer was closed and " +
          "this handle is thus no longer valid");
      }
      open();//一个文件已经完成将isOpen设置为false,则新建一个文件
    }

    // check if it's time to rotate the file
    if (shouldRotate()) {//检查文件的行数及大小,判断是否要关闭文件后重新生成文件。
      boolean doRotate = true;

      if (isUnderReplicated) {
        if (maxConsecUnderReplRotations > 0 &&
            consecutiveUnderReplRotateCount >= maxConsecUnderReplRotations) {
          doRotate = false;
          if (consecutiveUnderReplRotateCount == maxConsecUnderReplRotations) {
            LOG.error("Hit max consecutive under-replication rotations ({}); " +
                "will not continue rolling files under this path due to " +
                "under-replication", maxConsecUnderReplRotations);
          }
        } else {
          LOG.warn("Block Under-replication detected. Rotating file.");
        }
        consecutiveUnderReplRotateCount++;
      } else {
        consecutiveUnderReplRotateCount = 0;
      }

      if (doRotate) {
        close();
        open();//新建一个文件
      }
    }

    // write the event
    try {
      sinkCounter.incrementEventDrainAttemptCount();
      callWithTimeout(new CallRunner<Void>() {
        @Override
        public Void call() throws Exception {
          writer.append(event); // could block 往HDFS写入数据。
          return null;
        }
      });
    } catch (IOException e) {
      LOG.warn("Caught IOException writing to HDFSWriter ({}). Closing file (" +
          bucketPath + ") and rethrowing exception.",
          e.getMessage());
      try {
        close(true);
      } catch (IOException e2) {
        LOG.warn("Caught IOException while closing file (" +
             bucketPath + "). Exception follows.", e2);
      }
      throw e;
    }

    // update statistics
    processSize += event.getBody().length;
    eventCounter++;
    batchCounter++;

    if (batchCounter == batchSize) {
      flush();
    }
  }

打开新文件分为两类:

第一类不需要压缩

  public void open(String filePath) throws IOException {
    open(filePath, null, CompressionType.NONE);
  }

第二类要压缩

  public void open(String filePath, CompressionCodec codeC,
      CompressionType compType) throws IOException {
    Configuration conf = new Configuration();
    Path dstPath = new Path(filePath);
    FileSystem hdfs = dstPath.getFileSystem(conf);
    open(dstPath, codeC, compType, conf, hdfs);
  }
注:HDFSDataStream是不支持压缩的,所以直接调用第一类的open方法。

在open方法中,如果按时间滚动的rollInterval不为0,则创建Callable,放入timedRollFuture中rollInterval秒之后关闭文件,默认是30s写一个文件。

最后writer.append(event)是真正写数据到HDFS,writer分如下三种情况:

HDFSSequenceFile:append(event)方法,会先通过serializer.serialize(e)把event处理成一个Key和一个Value。

serializer为HDFSWritableSerializer:

Key:

private Object getKey(Event e) {
    String timestamp = e.getHeaders().get("timestamp");//获取header的timesteamp
    long eventStamp;

    if (timestamp == null) {//timestamp不存在就拿系统的当前时间
      eventStamp = System.currentTimeMillis();
    } else {
      eventStamp = Long.valueOf(timestamp);
    }
    return new LongWritable(eventStamp);//将时间封装成LongWritable
  }
Value:

  private BytesWritable makeByteWritable(Event e) {
    BytesWritable bytesObject = new BytesWritable();
    bytesObject.set(e.getBody(), 0, e.getBody().length);
    return bytesObject;
  }
serializer为HDFSTextSerializer:

Key同上,Value:

  private Text makeText(Event e) {
    Text textObject = new Text();
    textObject.set(e.getBody(), 0, e.getBody().length);
    return textObject;
  }

writer为HDFSDataStream:

直接调用serializer.write(e),serializer分三种:

org.apache.flume.serialization.BodyTextEventSerializer直接读取body写入OutputStream流中,然后在最后加"\n"。

org.apache.flume.serialization.HeaderAndBodyTextEventSerializer将e.getHeaders() + " " +e.getBody()写入数据流,然后根据配置看是否要加"\n"

org.apache.flume.serialization.AvroEventSerializer将event整体写入dataFileWriter。


然后appned方法更新统计,processSize统计文件大小;eventCounter统计文件行数;batchCounter是统计最近一次flush之后的处理的event数;

如果处理的event数量达到batchSize的大小,则刷新到HDFS,flush()方法会首先执行writer.sync()即写入HDFS,然后将batchCounter置为0,根据fileType的不同writer也会有很多写入类型:

HDFSSequenceFile:sync()方法执行SequenceFile.Writer.syncFs()将数据写入HDFS中;
HDFSDataStream:sync()方法执行
HDFSCompressedDataStream:sync()方法先执行serializer.flush():只有FlumeEventAvroEventSerializer的flush()方法也有实现dataFileWriter.flush(),其他俩BodyTextEventSerializer和HeaderAndBodyTextEventSerializer均未实现flush()方法。然后执行outStream.flush()和outStream.sync()将数据刷新至HDFS中。


7,回到HDFSEventSink.process()方法中,会根据这次事务处理的event数量更新相应的统计;

8,遍历writers,挨个刷新BucketWriter至HDFS;

9,最后提交事务,异常回滚,关闭事务。

最后停止:

  @Override
  public void stop() {
    // do not constrain close() calls with a timeout
    synchronized (sfWritersLock) {//获取对象锁
      //遍历对象锁
      for (Entry<String, BucketWriter> entry : sfWriters.entrySet()) {
        LOG.info("Closing {}", entry.getKey());
        //关闭BucketWriter,flush到HDFS
        try {
          entry.getValue().close();
        } catch (Exception ex) {
          LOG.warn("Exception while closing " + entry.getKey() + ". " +
                  "Exception follows.", ex);
          if (ex instanceof InterruptedException) {
            Thread.currentThread().interrupt();
          }
        }
      }
    }

    // shut down all our thread pools
    ExecutorService toShutdown[] = {callTimeoutPool, timedRollerPool};
    for (ExecutorService execService : toShutdown) {
      execService.shutdown();
      try {
        while (execService.isTerminated() == false) {
          execService.awaitTermination(
                  Math.max(defaultCallTimeout, callTimeout), TimeUnit.MILLISECONDS);
        }
      } catch (InterruptedException ex) {
        LOG.warn("shutdown interrupted on " + execService, ex);
      }
    }

    callTimeoutPool = null;
    timedRollerPool = null;

    synchronized (sfWritersLock) {
      sfWriters.clear();
      sfWriters = null;
    }
    sinkCounter.stop();
    super.stop();
  }


分享到:
评论

相关推荐

    Flume配置双HA hdfsSink.docx

    在默认情况下,Flume 的 HDFSSink 只能连接到一个Hadoop集群,并且能够通过配置支持HA模式。这意味着它可以根据`hdfs-site.xml`和`core-site.xml`中的设置自动选择活动的NameNode进行通信。但是,当需要同时将数据...

    Flume-HDFS-驱动-jar包

    描述中提到的问题是,当尝试使用Flume将数据发送到HDFS时,可能会出现由于缺少必要依赖导致的错误。解决这个问题的方法是手动将Hadoop相关的JAR文件添加到Flume的`lib`目录下。这是因为Flume的默认安装可能不包含...

    flume所需要的hdfs包.zip

    1. **Flume HDFS Sink**: 实现将 Flume 数据流写入 HDFS 的特定插件。这个 Sink 可能会包含配置文件、Java 类库或者二进制可执行文件,用于连接到 HDFS 并进行数据写入操作。 2. **配置文件**:Flume 的配置文件...

    flume+hdfs所需jar.rar

    在配置 Flume 以将数据写入 HDFS 时,我们需要在 Flume 的配置文件(通常是 `flume.conf`)中指定 HDFS Sink。例如: ```properties a.sources = r1 a.sinks = k1 a.channels = c1 a.sources.r1.type = exec a....

    Flume采集Rabbitmq数据同步到HDFS

    agent.sinks.hdfsSink.hdfs.filePrefix = flume_ agent.sinks.hdfsSink.hdfs.fileSuffix = .txt ``` 在这个配置中,`rabbitSource`是Source,它连接到RabbitMQ服务器的`myQueue`队列;`memoryChannel`是内存Channel...

    flume-ng-hdfs-sink-1.7.0.jar

    flume-ng-hdfs-sink-1.7.0.jar,这个包里包含了flume和HDFS集成的所有类

    flume 简介安装使用案例(将log4j数据写到hdfs中)

    在 Flume 中使用 Avro,可以通过设置 `agent_name.sinks.hdfsSink.serializer.class` 为 `org.apache.flume.sink.hdfs.HDFSEventSink$AvroEventSerializer` 来启用。 综上所述,Flume 是一个强大的日志收集工具,...

    利用Flume将MySQL表数据准实时抽取到HDFS、MySQL、Kafka

    Flume可以将MySQL的数据写入HDFS,以便进行后续的批处理分析或者作为其他Hadoop服务(如Hive、Pig等)的数据源。 4. **Kafka**: Kafka是一个高吞吐量的分布式消息系统,通常用作实时数据管道,将数据从一个位置传输...

    大数据Ambari之flume集成编译好的源码包

    1. **安装Flume**: 下载已经编译好的Flume源码包,如"zkyrpm",解压后获取对应的RPM包,使用Ambari的自定义服务功能添加Flume服务。确保你的Ambari版本与Flume版本兼容。 2. **配置Ambari**: 在Ambari管理界面,...

    flume消费kafka数据上传hdfs.doc

    Flume 消费 Kafka 数据上传 HDFS ...Flume 消费 Kafka 数据上传 HDFS 需要考虑 Channel 的选择、FileChannel 优化、HDFS Sink 的小文件问题、Flume 拦截器的使用等问题,以确保数据传输的可靠性和高效性。

    Flume采集数据到Kafka,然后从kafka取数据存储到HDFS的方法思路和完整步骤

    - 使用`scp`命令将Flume安装包及其他必要文件同步到其他服务器。 - 在每台服务器上执行`source`命令使环境变量生效。 4. **验证Flume安装**: - 进入Flume安装目录下的`bin`目录,运行`flume-ng version`检查...

    flume-hadoop-fonxian1024.zip

    通过正确配置Flume的HDFS Sink,并确保使用正确的jar包,我们可以高效地将日志数据存入HDFS,为后续的大数据分析提供可靠的数据源。在实际应用中,理解Flume的工作原理,熟练掌握配置方法,以及关注版本间的兼容性,...

    实时大数据采集框架Flume详解(视频+课件+代码+工具)

    04_Flume中配置使用file channel及HDFS sink 05_Flume中配置HDFS文件生成大小及时间分区 06_Flume中配置Spooling Dir的使用 07_Flume中配置Spooling Dir的文件过滤 08_Flume中配置扇入架构的介绍 09_Flume中...

    大数据采集技术-flume监控文件内容至hdfs.pdf

    agent.sinks.hdfsSink.hdfs.path = hdfs://namenode:port/path/to/save/data agent.sinks.hdfsSink.hdfs.fileType = DataStream agent.sinks.hdfsSink.hdfs.writeFormat = Text agent.sinks.hdfsSink.channel = ...

    Flume-ng在windows环境搭建并测试+log4j日志通过Flume输出到HDFS.docx

    在本文中,我们将介绍如何在 Windows 环境下搭建 Flume-ng,并使用 Log4j 将日志输出到 HDFS。 一、Flume-ng 安装与配置 首先,需要下载 Flume-ng 并解压到指定目录。然后,需要设置环境变量,新建 FLUME_HOME ...

    flume1.7.0源码

    通过分析 Apache Flume 1.7.0 的源码,开发者可以深入了解其内部工作流程,优化性能,解决实际问题,并为构建自己的数据采集和传输解决方案打下坚实基础。同时,对于大数据领域的研究者,源码也是深入研究数据处理...

    Kafka接收Flume数据并存储至HDFS.docx

    本文为读者提供了一个完整的大数据处理方案,从Flume数据采集到Kafka队列存储再到HDFS文件系统存储,帮助读者快速熟悉Flume、Kafka和HDFS的操作使用,以及相互的操作接口。 知识点: 1、Kafka的安装和配置,包括...

    flume log4f示例源码

    # 使用HDFSSink将数据写入Hadoop的HDFS agent.sinks.logSink.type = hdfs # HDFS的URL agent.sinks.logSink.hdfs.url = hdfs://namenode:port # 文件路径格式,可以包含时间戳等动态元素 agent.sinks.logSink.hdfs....

    大数据采集技术-Flume监控目录.pptx

    上述配置中,`dirSource`监视`/opt/module/flume/upload`目录,`memChannel`作为内存通道,`hdfsSink`将数据写入HDFS。 启动Flume客户端,使用如下命令: ``` bin/flume-ng agent --conf conf/ --name a3 --conf-...

Global site tag (gtag.js) - Google Analytics