`
distantlight1
  • 浏览: 44353 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

Java类源码学习(2)-HashMap-3

 
阅读更多

再接上篇,HashMap的最后一部分源码

主要是TreeNode逻辑实现,其中包含红黑树增删的相关算法(具体可以参考红黑树的相关介绍)

 

    /**
     * TreeNode的Entry类
     * 
     * TreeNode维持为红黑树,保证树的高度为O(logN),并按hashCode有序
     */
    static final class TreeNode<K, V> extends LinkedHashMap.Entry<K, V> {
        TreeNode<K, V> parent; // 父节点
        TreeNode<K, V> left; // 左子树
        TreeNode<K, V> right; // 右子树
        TreeNode<K, V> prev; // 链接的下个节点,用于删除
        boolean red; // 红黑标志

        TreeNode(int hash, K key, V val, Node<K, V> next) {
            super(hash, key, val, next);
        }

        // TreeNode内部使用///////////////////////

        /**
         * 回溯获取根节点
         */
        final TreeNode<K, V> root() {
            for (TreeNode<K, V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /**
         * 将根节点移到桶的首元素(也就是放到tab数组里),静态方法
         * 
         * 删除根节点的时候可能新的根节点不是首元素
         */
        static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash; // 桶下标
                TreeNode<K, V> first = (TreeNode<K, V>) tab[index]; // 当前首元素
                if (root != first) {
                    Node<K, V> rn;
                    tab[index] = root; // 更新首元素

                    // 以下操作就是双向链表中交换两个元素
                    TreeNode<K, V> rp = root.prev;
                    if ((rn = root.next) != null)
                        ((TreeNode<K, V>) rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root); // Tree结构没有改变
            }
        }

        /**
         * 递归寻找key==k的节点
         * 
         * @param kc (上层)缓存的comparableClassFor(key)的返回值
         */
        final TreeNode<K, V> find(int h, Object k, Class<?> kc) {
            TreeNode<K, V> p = this;
            do {
                int ph, dir;
                K pk;
                TreeNode<K, V> pl = p.left, pr = p.right, q;

                // 如果hashCode不同,先根据hashCode定位子树
                // XXX 同一桶内会发生么?
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                // 以下为ph == h
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p; // equal,找到返回
                // 只有<=1棵子树情况
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                // 有两棵子树,且是Comparable,则根据Comparable判断
                else if ((kc != null || (kc = comparableClassFor(k)) != null)
                        && (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                // 有两棵子树,但不是Comparable,这时只能去两个子树一起找(O(N))
                // 这地方循环和递归各处理一个子树
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * 辅助方法用来给两个对象指定顺序
         * 
         * 用于处理hashCode相同又不是Comparable的情况
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null
            // 如果不是同一个类,就根据类名排序
                    || (d = a.getClass().getName().compareTo(b.getClass().getName())) == 0)
                // 否则就根据原生(未重写)的hashCode来排序,System.identityHashCode是native实现
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ? -1 : 1);
            return d;
        }

        // HashMap使用//////////////////////

        /**
         * 在当前节点所在的整个树(就是这个桶)里寻找key.equals(k)的节点
         */
        final TreeNode<K, V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * 将本节点所属的桶转化为树状结构(调用时该桶应为TreeNode组成的列表)
         * 
         * @return 根节点
         */
        final void treeify(Node<K, V>[] tab) {
            TreeNode<K, V> root = null;
            for (TreeNode<K, V> x = this, next; x != null; x = next) {
                next = (TreeNode<K, V>) x.next; // 外层遍历整个链表
                x.left = x.right = null;
                if (root == null) { // 根节点(第一次循环)
                    x.parent = null;
                    x.red = false;
                    root = x;
                } else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K, V> p = root;;) { // 内层向当前成树的部分插入节点x(满足排序关系)
                        int dir, ph; // dir是排序对比结果,ph是p的hash值
                        K pk = p.key;
                        if ((ph = p.hash) > h) {// 比较p和x的顺序
                            dir = -1;
                        } else if (ph < h) {
                            dir = 1;
                        } else if ((kc == null && (kc = comparableClassFor(k)) == null)
                                || (dir = compareComparables(kc, k, pk)) == 0) {
                            dir = tieBreakOrder(k, pk);
                        }

                        TreeNode<K, V> xp = p; // 缓存p
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            // 如果找到了空位,就把x放进去,否则在对应子树继续循环找
                            x.parent = xp;
                            if (dir <= 0) {
                                xp.left = x;
                            } else {
                                xp.right = x;
                            }

                            // 平衡当前的树,保持红黑树特性
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root); // 根节点挪到桶的第一个(链结构中)
        }

        /**
         * 将本节点所在桶退化为普通的链表桶
         * 
         * @param map 只是为了引用辅助的实体方法
         */
        final Node<K, V> untreeify(HashMap<K, V> map) {
            Node<K, V> hd = null, tl = null;
            // 遍历每个节点(TreeNode),转为普通节点然后串成链表
            for (Node<K, V> q = this; q != null; q = q.next) {
                Node<K, V> p = map.replacementNode(q, null);
                if (tl == null) {
                    hd = p;
                } else {
                    tl.next = p;
                }
                tl = p;
            }
            return hd;
        }

        /**
         * TreeNode桶的put实现
         * 
         * @return 如果k存在,返回对应的(旧)节点,注意此方法不执行value覆盖(由外层根据具体情况判断是否覆盖)
         * 
         *         如果k不存在,返回null
         */
        final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab, int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K, V> root = (parent != null) ? root() : this; // 本桶的根节点
            for (TreeNode<K, V> p = root;;) { // 逐层寻找put的位置
                int dir, ph;
                K pk;

                // 比较hash值
                if ((ph = p.hash) > h) {
                    dir = -1;
                } else if (ph < h) {
                    dir = 1;
                } else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                    return p; // 找到equal,直接返回了
                else if ((kc == null && (kc = comparableClassFor(k)) == null)
                        || (dir = compareComparables(kc, k, pk)) == 0) {
                    // 根据Comparable比较不出的话,只能遍历整个子树来判断Equal
                    if (!searched) {
                        TreeNode<K, V> q, ch;
                        searched = true;
                        // 在子树递归寻找equal,这个分支由searched标志,只会执行一次
                        if (((ch = p.left) != null && (q = ch.find(h, k, kc)) != null)
                                || ((ch = p.right) != null && (q = ch.find(h, k, kc)) != null))
                            return q;
                    }

                    // 这里就是真没有Equal的,又没办法比较出来,只能规定顺序来使循环继续
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K, V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    // 找到了可插入的空位(否则继续循环)
                    Node<K, V> xpn = xp.next;
                    TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn); // 创建新节点
                    if (dir <= 0) { // 插入树
                        xp.left = x;
                    } else {
                        xp.right = x;
                    }

                    // 插入链表(注意TreeNode桶仍然维护链表结构)
                    xp.next = x;
                    x.parent = x.prev = xp; // 挂在prev节点下作为子节点
                    if (xpn != null) {
                        ((TreeNode<K, V>) xpn).prev = x;
                    }

                    // 根节点移动桶首位
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * TreeNode桶中删除本节点(this) This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf successor that is pinned by
         * "next" pointers that are accessible independently during traversal. So instead we swap
         * the tree linkages. XXX
         */
        final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab, boolean movable) {
            int n;
            // 空情形
            if (tab == null || (n = tab.length) == 0) {
                return;
            }

            int index = (n - 1) & hash;
            TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl; // 桶的首节点
            TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev; // 本节点在链结构里的前后节点

            // 先在链结构中删除this
            if (pred == null) { // 如果this是首节点,则原桶中次节点递补
                tab[index] = first = succ;
            } else {
                pred.next = succ;
            }
            if (succ != null) {
                succ.prev = pred;
            }
            if (first == null) { // 如果桶已经删空了,那么没什么别的要做的了
                return;
            }

            // 找到(原)树结构中的根(树结构中还没删this,一般情况下应不会进这个if)
            if (root.parent != null) {
                root = root.root();
            }

            // 树太小的情况(顶部三层中有null,注意红黑树是准平衡的),直接不要树结构了,退化为链表
            if (root == null || root.right == null || (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map); // too small
                return;
            }

            // 这里开始真正在树结构里删,比较复杂,参见红黑树的删除过程 // TODO
            TreeNode<K, V> p = this, pl = left, pr = right, replacement; // this,左右子树,替代节点
            // 以下为寻找replacement过程,replacement至少有一个子树为null
            if (pl != null && pr != null) { // 左右子树均非空
                TreeNode<K, V> s = pr, sl; // 右节点(sister)
                while ((sl = s.left) != null) { // 右子树里面最左侧的叶节点(successor)
                    s = sl;
                }

                // 交换this和successor的颜色
                boolean c = s.red;
                s.red = p.red;
                p.red = c;

                TreeNode<K, V> sr = s.right; // successor的右节点
                TreeNode<K, V> pp = p.parent; // this的父节点
                if (s == pr) { // successor就是p的(直接)右节点(说明s没有左子树)
                    // 交换this和s的位置
                    p.parent = s;
                    s.right = p;
                } else {
                    TreeNode<K, V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left) {
                            sp.left = p;
                        } else {
                            sp.right = p;
                        }
                    }
                    if ((s.right = pr) != null) {
                        pr.parent = s;
                    }
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            } else if (pl != null) { // 只有左子树
                replacement = pl;
            } else if (pr != null) { // 只有右子树
                replacement = pr;
            } else { // 本身就是叶,直接选自己了
                replacement = p;
            }

            if (replacement != p) {
                TreeNode<K, V> pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) { // detach
                TreeNode<K, V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }

            if (movable) {
                // 移动根节点到桶首位
                moveRootToFront(tab, r);
            }
        }

        /**
         * TreeNode桶切分,用于resize。如切分后树过小,则退化为链表
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index 待切分的桶下标
         * @param bit 旧hash掩码(旧capacity)
         */
        final void split(HashMap<K, V> map, Node<K, V>[] tab, int index, int bit) {
            TreeNode<K, V> b = this; // 本节点
            // 分离后高低位桶的链结构
            TreeNode<K, V> loHead = null, loTail = null;
            TreeNode<K, V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0; // 新桶的尺寸

            // 建立新的链结构
            for (TreeNode<K, V> e = b, next; e != null; e = next) { // 遍历旧桶元素
                next = (TreeNode<K, V>) e.next;
                e.next = null;
                if ((e.hash & bit) == 0) { // 低位桶
                    if ((e.prev = loTail) == null) {
                        loHead = e;
                    } else {
                        loTail.next = e;
                    }
                    loTail = e;
                    ++lc;
                } else { // 高位桶
                    if ((e.prev = hiTail) == null) {
                        hiHead = e;
                    } else {
                        hiTail.next = e;
                    }
                    hiTail = e;
                    ++hc;
                }
            }

            // 如节点数过少则退化为链表,否则重新组织两个桶成树
            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD) {
                    tab[index] = loHead.untreeify(map);
                } else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD) {
                    tab[index + bit] = hiHead.untreeify(map);
                } else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        // 红黑树相关操作静态方法 ///////////////////
        // 参考http://blog.chinaunix.net/uid-26575352-id-3061918.html

        /**
         * 左旋-节点p向左下降一层,原右节点代替节点p
         * 
         * @param root
         * @param p 操作节点
         * @return
         */
        static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p) {
            TreeNode<K, V> r, pp, rl; // 右,父,右左
            if (p != null && (r = p.right) != null) { // 没有右子的话不操作
                if ((rl = p.right = r.left) != null) {
                    rl.parent = p; // 右左节点变为p的右节点,代替r的位置
                }

                // 原r节点移到p的位置
                if ((pp = r.parent = p.parent) == null) {
                    (root = r).red = false; // 如果p原先是根节点,则原r成为新根节点
                } else if (pp.left == p) {
                    pp.left = r;
                } else {
                    pp.right = r;
                }
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        /**
         * 右旋
         */
        static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root, TreeNode<K, V> p) {
            TreeNode<K, V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        /**
         * 平衡插入操作,调用本方法时x节点已插入,本方法调整树结构来维持红黑树特性
         * 
         * @param root
         * @param x 新插入的节点,且为红色叶节点
         * @return
         */
        static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root, TreeNode<K, V> x) {
            x.red = true;
            for (TreeNode<K, V> xp, xpp, xppl, xppr;;) { // 父,祖父,祖父的左右子节点
                if ((xp = x.parent) == null) {
                    // 1.如果x是根,说明原来是空树,改成黑色就行了
                    x.red = false;
                    return x;
                } else if (!xp.red || (xpp = xp.parent) == null) {
                    // 2.父节点是黑色,则红黑树性质没有破坏(注意x是红的),不需要任何操作
                    return root;
                }

                // xp是红色,此时xp违反红黑树特性
                if (xp == (xppl = xpp.left)) { // xp是左节点
                    if ((xppr = xpp.right) != null && xppr.red) {
                        // 3.xppr(叔父节点)是红色:将父、叔父改黑,祖父改红
                        // 此时父节点子树已经符合红黑树标准,问题转嫁到xpp上,继续循环
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    } else {

                        if (x == xp.right) {
                            // 4.叔父是黑色,当前节点是右节点,则对xp左旋
                            // 此时问题转嫁到原xpl(兄弟)节点,归为情况5
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }

                        // 5.叔父是黑色,当前节点是左节点
                        // 父节点改黑,祖父改红,并对祖父右旋
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                } else { // xp是右节点,对称操作
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    } else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        /**
         * 平衡删除操作
         * 
         * @param root
         * @param x 被删除节点
         * @return
         */
        static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root, TreeNode<K, V> x) {
            for (TreeNode<K, V> xp, xpl, xpr;;) {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                } else if (x.red) {
                    x.red = false;
                    return root;
                } else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode<K, V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) && (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        } else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ? null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                } else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode<K, V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) && (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        } else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ? null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * 递归校验指针兼容性和整个树的有序性,容错机制
         */
        static <K, V> boolean checkInvariants(TreeNode<K, V> t) {
            TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right, tb = t.prev, tn = (TreeNode<K, V>) t.next;
            if (tb != null && tb.next != t) // prev.next=self
                return false;
            if (tn != null && tn.prev != t) // next.prev=self
                return false;
            if (tp != null && t != tp.left && t != tp.right) // self in (parent.left,parent.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash)) // left.parent=self
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash)) // right.parent=self
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red) // 红节点的子节点为黑(XXX 似乎应该有个是OR?)
                return false;

            // 递归
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }

 

分享到:
评论

相关推荐

    基于Java并发编程的concurrency-hashmap-test设计源码

    该项目为基于Java并发编程的ConcurrentHashMap测试设计源码,共包含24个文件,其中Java源文件21个,Git忽略文件1个,Markdown文档1个,XML配置文件1个。内容涵盖并发编程课件代码,适合学习并发编程相关知识。关注...

    java毕业设计项目源码---讯友桌面通讯录

    3. **数据结构与算法**:为了存储和操作通讯录中的联系人信息,项目可能使用了数据结构,如ArrayList或HashMap。这些数据结构的选择和使用直接影响到程序的性能和功能。 4. **文件I/O操作**:为了保存和加载通讯录...

    20-集合框架020-HashMap-1080P 高清-AVC20

    在这个主题中,我们将深入探讨HashMap类,它是Java集合框架中的一个关键组件,特别是在标题“20-集合框架020-HashMap-1080P 高清-AVC20”和描述中所提到的内容。 HashMap是Java.util包中的一个类,它实现了Map接口...

    java毕业设计项目源码---蓝宇快递打印系统

    【Java毕业设计项目源码——蓝宇快递打印系统】是一个基于Java编程语言的软件开发实践,主要用于实现快递公司的打印管理功能。这个系统包含了完整的源代码,对于学习Java编程,特别是针对毕业设计的学生来说,是一个...

    基于Java的实例开发源码-github-Java-api.zip

    2. **集合框架**:Java集合框架包含ArrayList、LinkedList、HashMap等数据结构,方便存储和管理对象。 3. **多线程**:Java.util.concurrent包提供了高级的线程管理和并发工具,如ExecutorService和Semaphore。 4. *...

    java7hashmap源码-Excellent-Blog-share:欢迎分享优秀博客

    hashmap源码 Excellent-Blog-share Welcome to share excellent blogs . 当你的能力还驾驭不了你的目标时,就应该沉下心来历练 当你的才华还撑不起你的野心时,那你就应该静下心来学习 #目录 ###附录 java系列 java8...

    app+java+源码-Java-Banking-Application-:JavaBanking的源代码

    3. **Java集合框架**:在处理账户、交易等数据时,Java集合框架如ArrayList、LinkedList、HashMap等将起到关键作用。这些数据结构有助于有效地存储和操作数据。 4. **多线程**:由于银行应用通常涉及并发操作,如多...

    java源码整理包-集合

    在这个“java源码整理包-集合”中,包含了多种核心的集合类的源代码,如`List`、`Map`、`ArrayList`、`HashMap`、`HashSet`、`Hashtable`、`TreeMap`、`TreeSet`和`Vector`。这些源码对于深入理解Java集合的工作原理...

    Java集合专题总结:HashMap 和 HashTable 源码学习和面试总结

    Java集合专题总结:HashMap和HashTable源码学习和面试总结 本文总结了Java集合专题中的HashMap和HashTable,涵盖了它们的源码学习和面试总结。HashMap是一种基于哈希表的集合类,它的存储结构是一个数组,每个元素...

    基于Java的实例开发源码-P2P-多用户在线聊天室(Java源码).zip

    这个Java源码实例对于学习Java网络编程、多线程、GUI设计以及P2P技术具有很高的参考价值。开发者可以通过阅读和理解代码,进一步掌握这些核心概念,并能在此基础上扩展出更多功能,比如文件共享、群聊、语音/视频...

    深入Java集合学习系列:HashMap的实现原理

    在Java编程语言中,集合框架是开发者日常工作中不可或缺的一部分,HashMap作为其中的重要成员,它的实现原理对于理解Java性能优化和数据结构有深远的意义。HashMap是一个基于哈希表的数据结构,它实现了Map接口,...

    JAVA实战项目源码-计算机毕业设计java专业-项目源码-项目说明介绍-JAVA+SQL离散数学题库管理系统

    **JAVA实战项目源码-计算机毕业设计java专业-项目源码-项目说明介绍-JAVA+SQL离散数学题库管理系统** 这个项目是一个基于JAVA编程语言和SQL数据库技术的离散数学题库管理系统,专为计算机专业学生设计,适用于毕业...

    java源码和android-17源码

    Java源码和Android 17源码是两个重要的学习资源,对于深入理解Java编程语言以及Android应用程序开发至关重要。这两部分源代码提供了丰富的信息,帮助开发者探究底层实现细节,提升编程技能,解决实际问题。 首先,...

    三套Java基础课件加源码--晋级版

    在本资源包“三套Java基础课件加源码--晋级版”中,你将找到一系列精心设计的Java学习资料,旨在帮助初学者逐步提升技能并深入理解Java编程语言。这个资源包对于那些希望从基础知识开始,逐步进阶的开发者来说是理想...

    java-jdk源码学习

    Java JDK源码学习是深入理解Java编程语言的关键步骤,它能帮助开发者洞悉语言底层的工作原理,提升编程技能和优化代码的能力。JDK(Java Development Kit)是Java开发的核心工具集,包含了Java运行时环境(JRE)、...

    JAVA实战项目源码-计算机毕业设计java专业-项目源码-项目说明介绍-java+applet-家庭理财系统

    《JAVA实战项目源码-家庭理财系统》是一个典型的JAVA编程语言实现的计算机毕业设计项目,旨在帮助学生理解和应用JAVA技术解决实际问题。该项目利用JAVA的强大力量,结合APPLET技术,构建了一个全面的家庭财务管理...

    hashMap1.8源码

    HashMap是Java编程语言中最常用的集合类之一,它提供了一种基于键值对(key-value pair)的数据存储方式,具有高效查找、插入和删除操作。在Java 8中,HashMap的实现有了很多改进,以提高性能和空间利用率。下面我们...

    Java 开发-----图书管管理系统(视频+源码).rar

    《Java开发-----图书管管理系统(视频+源码).rar》是一个综合的学习资源,它涵盖了Java编程语言在实际项目中的应用,特别关注于开发一个图书管理系统的全过程。这个压缩包包含了视频教程和完整的源代码,旨在帮助学习...

    Java常用类源码

    在Java编程语言中,了解和研究常用类的源码对于提升编程技能至关重要。Java的类库丰富多样,包含了大量预定义的类,这些类提供了许多基础功能,方便开发者快速构建应用程序。本文将深入探讨几个Java中常用的类,包括...

    java7hashmap源码-learning-record:学习轨迹记录

    hashmap源码 learning-record - 学习轨迹记录 10月1号 7月18号 基础算法:反转单向链表 7月16号 7月11号 7月9号 复习 : HashTable和HashMap的区别详解 LeetCode 27. 删除元素(Remove Element) 7月8号 7月5号 复习...

Global site tag (gtag.js) - Google Analytics