查看StringBuffer源码可知,其是线程安全的,初始值为一个长度为16的char[],长度可变
StringBuilder与其的区别仅仅是去掉了线程安全方面的处理,单线程的情况下考虑用StringBuilder
/*
* %W% %E%
*
* Copyright (c) 2006, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
package java.lang;
/**
* A thread-safe, mutable sequence of characters.
* A string buffer is like a {@link String}, but can be modified. At any
* point in time it contains some particular sequence of characters, but
* the length and content of the sequence can be changed through certain
* method calls.
* <p>
* String buffers are safe for use by multiple threads. The methods
* are synchronized where necessary so that all the operations on any
* particular instance behave as if they occur in some serial order
* that is consistent with the order of the method calls made by each of
* the individual threads involved.
* <p>
* The principal operations on a <code>StringBuffer</code> are the
* <code>append</code> and <code>insert</code> methods, which are
* overloaded so as to accept data of any type. Each effectively
* converts a given datum to a string and then appends or inserts the
* characters of that string to the string buffer. The
* <code>append</code> method always adds these characters at the end
* of the buffer; the <code>insert</code> method adds the characters at
* a specified point.
* <p>
* For example, if <code>z</code> refers to a string buffer object
* whose current contents are "<code>start</code>", then
* the method call <code>z.append("le")</code> would cause the string
* buffer to contain "<code>startle</code>", whereas
* <code>z.insert(4, "le")</code> would alter the string buffer to
* contain "<code>starlet</code>".
* <p>
* In general, if sb refers to an instance of a <code>StringBuffer</code>,
* then <code>sb.append(x)</code> has the same effect as
* <code>sb.insert(sb.length(), x)</code>.
* <p>
* Whenever an operation occurs involving a source sequence (such as
* appending or inserting from a source sequence) this class synchronizes
* only on the string buffer performing the operation, not on the source.
* <p>
* Every string buffer has a capacity. As long as the length of the
* character sequence contained in the string buffer does not exceed
* the capacity, it is not necessary to allocate a new internal
* buffer array. If the internal buffer overflows, it is
* automatically made larger.
*
* As of release JDK 5, this class has been supplemented with an equivalent
* class designed for use by a single thread, {@link StringBuilder}. The
* <tt>StringBuilder</tt> class should generally be used in preference to
* this one, as it supports all of the same operations but it is faster, as
* it performs no synchronization.
*
* @authorArthur van Hoff
* @version %I%, %G%
* @see java.lang.StringBuilder
* @see java.lang.String
* @since JDK1.0
*/
public final class StringBuffer
extends AbstractStringBuilder
implements java.io.Serializable, CharSequence
{
/** use serialVersionUID from JDK 1.0.2 for interoperability */
static final long serialVersionUID = 3388685877147921107L;
/**
* Constructs a string buffer with no characters in it and an
* initial capacity of 16 characters.
*/
public StringBuffer() {
super(16);
}
/**
* Constructs a string buffer with no characters in it and
* the specified initial capacity.
*
* @param capacity the initial capacity.
* @exception NegativeArraySizeException if the <code>capacity</code>
* argument is less than <code>0</code>.
*/
public StringBuffer(int capacity) {
super(capacity);
}
/**
* Constructs a string buffer initialized to the contents of the
* specified string. The initial capacity of the string buffer is
* <code>16</code> plus the length of the string argument.
*
* @param str the initial contents of the buffer.
* @exception NullPointerException if <code>str</code> is <code>null</code>
*/
public StringBuffer(String str) {
super(str.length() + 16);
append(str);
}
/**
* Constructs a string buffer that contains the same characters
* as the specified <code>CharSequence</code>. The initial capacity of
* the string buffer is <code>16</code> plus the length of the
* <code>CharSequence</code> argument.
* <p>
* If the length of the specified <code>CharSequence</code> is
* less than or equal to zero, then an empty buffer of capacity
* <code>16</code> is returned.
*
* @param seq the sequence to copy.
* @exception NullPointerException if <code>seq</code> is <code>null</code>
* @since 1.5
*/
public StringBuffer(CharSequence seq) {
this(seq.length() + 16);
append(seq);
}
public synchronized int length() {
return count;
}
public synchronized int capacity() {
return value.length;
}
public synchronized void ensureCapacity(int minimumCapacity) {
if (minimumCapacity > value.length) {
expandCapacity(minimumCapacity);
}
}
/**
* @since 1.5
*/
public synchronized void trimToSize() {
super.trimToSize();
}
/**
* @throws IndexOutOfBoundsException {@inheritDoc}
* @see #length()
*/
public synchronized void setLength(int newLength) {
super.setLength(newLength);
}
/**
* @throws IndexOutOfBoundsException {@inheritDoc}
* @see #length()
*/
public synchronized char charAt(int index) {
if ((index < 0) || (index >= count))
throw new StringIndexOutOfBoundsException(index);
return value[index];
}
/**
* @since 1.5
*/
public synchronized int codePointAt(int index) {
return super.codePointAt(index);
}
/**
* @since 1.5
*/
public synchronized int codePointBefore(int index) {
return super.codePointBefore(index);
}
/**
* @since 1.5
*/
public synchronized int codePointCount(int beginIndex, int endIndex) {
return super.codePointCount(beginIndex, endIndex);
}
/**
* @since 1.5
*/
public synchronized int offsetByCodePoints(int index, int codePointOffset) {
return super.offsetByCodePoints(index, codePointOffset);
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public synchronized void getChars(int srcBegin, int srcEnd, char dst[],
int dstBegin)
{
super.getChars(srcBegin, srcEnd, dst, dstBegin);
}
/**
* @throws IndexOutOfBoundsException {@inheritDoc}
* @see #length()
*/
public synchronized void setCharAt(int index, char ch) {
if ((index < 0) || (index >= count))
throw new StringIndexOutOfBoundsException(index);
value[index] = ch;
}
/**
* @see java.lang.String#valueOf(java.lang.Object)
* @see #append(java.lang.String)
*/
public synchronized StringBuffer append(Object obj) {
super.append(String.valueOf(obj));
return this;
}
public synchronized StringBuffer append(String str) {
super.append(str);
return this;
}
/**
* Appends the specified <tt>StringBuffer</tt> to this sequence.
* <p>
* The characters of the <tt>StringBuffer</tt> argument are appended,
* in order, to the contents of this <tt>StringBuffer</tt>, increasing the
* length of this <tt>StringBuffer</tt> by the length of the argument.
* If <tt>sb</tt> is <tt>null</tt>, then the four characters
* <tt>"null"</tt> are appended to this <tt>StringBuffer</tt>.
* <p>
* Let <i>n</i> be the length of the old character sequence, the one
* contained in the <tt>StringBuffer</tt> just prior to execution of the
* <tt>append</tt> method. Then the character at index <i>k</i> in
* the new character sequence is equal to the character at index <i>k</i>
* in the old character sequence, if <i>k</i> is less than <i>n</i>;
* otherwise, it is equal to the character at index <i>k-n</i> in the
* argument <code>sb</code>.
* <p>
* This method synchronizes on <code>this</code> (the destination)
* object but does not synchronize on the source (<code>sb</code>).
*
* @param sb the <tt>StringBuffer</tt> to append.
* @return a reference to this object.
* @since 1.4
*/
public synchronized StringBuffer append(StringBuffer sb) {
super.append(sb);
return this;
}
/**
* Appends the specified <code>CharSequence</code> to this
* sequence.
* <p>
* The characters of the <code>CharSequence</code> argument are appended,
* in order, increasing the length of this sequence by the length of the
* argument.
*
* <p>The result of this method is exactly the same as if it were an
* invocation of this.append(s, 0, s.length());
*
* <p>This method synchronizes on this (the destination)
* object but does not synchronize on the source (<code>s</code>).
*
* <p>If <code>s</code> is <code>null</code>, then the four characters
* <code>"null"</code> are appended.
*
* @param s the <code>CharSequence</code> to append.
* @return a reference to this object.
* @since 1.5
*/
public StringBuffer append(CharSequence s) {
// Note, synchronization achieved via other invocations
if (s == null)
s = "null";
if (s instanceof String)
return this.append((String)s);
if (s instanceof StringBuffer)
return this.append((StringBuffer)s);
return this.append(s, 0, s.length());
}
/**
* @throws IndexOutOfBoundsException {@inheritDoc}
* @since 1.5
*/
public synchronized StringBuffer append(CharSequence s, int start, int end)
{
super.append(s, start, end);
return this;
}
public synchronized StringBuffer append(char str[]) {
super.append(str);
return this;
}
public synchronized StringBuffer append(char str[], int offset, int len) {
super.append(str, offset, len);
return this;
}
/**
* @see java.lang.String#valueOf(boolean)
* @see #append(java.lang.String)
*/
public synchronized StringBuffer append(boolean b) {
super.append(b);
return this;
}
public synchronized StringBuffer append(char c) {
super.append(c);
return this;
}
/**
* @see java.lang.String#valueOf(int)
* @see #append(java.lang.String)
*/
public synchronized StringBuffer append(int i) {
super.append(i);
return this;
}
/**
* @since 1.5
*/
public synchronized StringBuffer appendCodePoint(int codePoint) {
super.appendCodePoint(codePoint);
return this;
}
/**
* @see java.lang.String#valueOf(long)
* @see #append(java.lang.String)
*/
public synchronized StringBuffer append(long lng) {
super.append(lng);
return this;
}
/**
* @see java.lang.String#valueOf(float)
* @see #append(java.lang.String)
*/
public synchronized StringBuffer append(float f) {
super.append(f);
return this;
}
/**
* @see java.lang.String#valueOf(double)
* @see #append(java.lang.String)
*/
public synchronized StringBuffer append(double d) {
super.append(d);
return this;
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @since 1.2
*/
public synchronized StringBuffer delete(int start, int end) {
super.delete(start, end);
return this;
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @since 1.2
*/
public synchronized StringBuffer deleteCharAt(int index) {
super.deleteCharAt(index);
return this;
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @since 1.2
*/
public synchronized StringBuffer replace(int start, int end, String str) {
super.replace(start, end, str);
return this;
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @since 1.2
*/
public synchronized String substring(int start) {
return substring(start, count);
}
/**
* @throws IndexOutOfBoundsException {@inheritDoc}
* @since 1.4
*/
public synchronized CharSequence subSequence(int start, int end) {
return super.substring(start, end);
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @since 1.2
*/
public synchronized String substring(int start, int end) {
return super.substring(start, end);
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @since 1.2
*/
public synchronized StringBuffer insert(int index, char str[], int offset,
int len)
{
super.insert(index, str, offset, len);
return this;
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @see java.lang.String#valueOf(java.lang.Object)
* @see #insert(int, java.lang.String)
* @see #length()
*/
public synchronized StringBuffer insert(int offset, Object obj) {
super.insert(offset, String.valueOf(obj));
return this;
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @see #length()
*/
public synchronized StringBuffer insert(int offset, String str) {
super.insert(offset, str);
return this;
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
*/
public synchronized StringBuffer insert(int offset, char str[]) {
super.insert(offset, str);
return this;
}
/**
* @throws IndexOutOfBoundsException {@inheritDoc}
* @since 1.5
*/
public StringBuffer insert(int dstOffset, CharSequence s) {
// Note, synchronization achieved via other invocations
if (s == null)
s = "null";
if (s instanceof String)
return this.insert(dstOffset, (String)s);
return this.insert(dstOffset, s, 0, s.length());
}
/**
* @throws IndexOutOfBoundsException {@inheritDoc}
* @since 1.5
*/
public synchronized StringBuffer insert(int dstOffset, CharSequence s,
int start, int end)
{
super.insert(dstOffset, s, start, end);
return this;
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @see java.lang.String#valueOf(boolean)
* @see #insert(int, java.lang.String)
* @see #length()
*/
public StringBuffer insert(int offset, boolean b) {
return insert(offset, String.valueOf(b));
}
/**
* @throws IndexOutOfBoundsException {@inheritDoc}
* @see #length()
*/
public synchronized StringBuffer insert(int offset, char c) {
super.insert(offset, c);
return this;
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @see java.lang.String#valueOf(int)
* @see #insert(int, java.lang.String)
* @see #length()
*/
public StringBuffer insert(int offset, int i) {
return insert(offset, String.valueOf(i));
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @see java.lang.String#valueOf(long)
* @see #insert(int, java.lang.String)
* @see #length()
*/
public StringBuffer insert(int offset, long l) {
return insert(offset, String.valueOf(l));
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @see java.lang.String#valueOf(float)
* @see #insert(int, java.lang.String)
* @see #length()
*/
public StringBuffer insert(int offset, float f) {
return insert(offset, String.valueOf(f));
}
/**
* @throws StringIndexOutOfBoundsException {@inheritDoc}
* @see java.lang.String#valueOf(double)
* @see #insert(int, java.lang.String)
* @see #length()
*/
public StringBuffer insert(int offset, double d) {
return insert(offset, String.valueOf(d));
}
/**
* @throws NullPointerException {@inheritDoc}
* @since 1.4
*/
public int indexOf(String str) {
return indexOf(str, 0);
}
/**
* @throws NullPointerException {@inheritDoc}
* @since 1.4
*/
public synchronized int indexOf(String str, int fromIndex) {
return String.indexOf(value, 0, count,
str.toCharArray(), 0, str.length(), fromIndex);
}
/**
* @throws NullPointerException {@inheritDoc}
* @since 1.4
*/
public int lastIndexOf(String str) {
// Note, synchronization achieved via other invocations
return lastIndexOf(str, count);
}
/**
* @throws NullPointerException {@inheritDoc}
* @since 1.4
*/
public synchronized int lastIndexOf(String str, int fromIndex) {
return String.lastIndexOf(value, 0, count,
str.toCharArray(), 0, str.length(), fromIndex);
}
/**
* @since JDK1.0.2
*/
public synchronized StringBuffer reverse() {
super.reverse();
return this;
}
public synchronized String toString() {
return new String(value, 0, count);
}
/**
* Serializable fields for StringBuffer.
*
* @serialField value char[]
* The backing character array of this StringBuffer.
* @serialField count int
* The number of characters in this StringBuffer.
* @serialField shared boolean
* A flag indicating whether the backing array is shared.
* The value is ignored upon deserialization.
*/
private static final java.io.ObjectStreamField[] serialPersistentFields =
{
new java.io.ObjectStreamField("value", char[].class),
new java.io.ObjectStreamField("count", Integer.TYPE),
new java.io.ObjectStreamField("shared", Boolean.TYPE),
};
/**
* readObject is called to restore the state of the StringBuffer from
* a stream.
*/
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
java.io.ObjectOutputStream.PutField fields = s.putFields();
fields.put("value", value);
fields.put("count", count);
fields.put("shared", false);
s.writeFields();
}
/**
* readObject is called to restore the state of the StringBuffer from
* a stream.
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
java.io.ObjectInputStream.GetField fields = s.readFields();
value = (char[])fields.get("value", null);
count = (int)fields.get("count", 0);
}
}
相关推荐
StringBuffer & StringBuilder 源码分析 StringBuffer 和 StringBuilder 是 Java 语言中两个常用的字符串操作类,它们都是 CharSequence 接口的实现类,并且都继承了 AbstractStringBuilder 类。下面是对这两个类的...
在Java编程语言中,`StringBuffer` 和 `StringBuilder` 是两个重要的类,它们主要用于处理可变的字符串。这两个类在很多方面都非常相似,但存在一些关键的区别。 **一、StringBuffer和StringBuilder的区别** 1. **...
在Java编程语言中,String、StringBuffer和StringBuilder都是用来处理字符串的重要类,它们各自有特定的使用场景和特性。理解这三个类的区别对于任何Java开发者,无论是初学者还是经验丰富的程序员,都是非常重要的...
"String StringBuffer和StringBuilder区别之源码解析" 在Java中,字符串是我们经常使用的数据类型,而String、StringBuffer和StringBuilder是Java中三种常用的字符串类。在这篇文章中,我们将从源码角度对String、...
在Java编程语言中,String、StringBuilder和StringBuffer都是用来处理字符串的类,它们之间存在一些重要的区别,主要涉及到性能和线程安全性。 首先,`String`类代表的是字符串常量,一旦创建,其内容就不能改变。...
String, StringBuffer 与 StringBuilder 的区别 在 Java 中,String, StringBuffer 和 StringBuilder 三个类都是用于字符操作的,但它们之间有着很大的区别。 首先,String 是不可变类,意味着一旦创建了 String ...
在Java编程语言中,`String`、`StringBuffer`和`StringBuilder`是处理字符串的三个重要类,它们各自有特定的使用场景和优缺点。理解它们的差异对于编写高效的代码至关重要。 **String类** `String`是不可变的类,...
StringBuffer:字符创变量 StringBuilder:字符创变量 从上面的名字可以看到,String是“字符创常量”,也就是不可改变的对象。对于这句话的理解你可能会产生这样一个疑问 ,比如这段代码:
在Java编程语言中,`String`、`StringBuffer`和`StringBuilder`都是用来处理字符串的类,但它们之间存在显著的差异,主要体现在性能、线程安全性和使用场景上。 首先,`String`是最基本的字符串类,它代表的是不可...
String、StringBuffer 和 StringBuilder 是 Java 语言中三种不同类型的字符串处理方式,它们之间存在着明显的性能和线程安全性差异。 String String 类型是不可变的对象,每次对 String 对象进行改变时都会生成一...
stringbuilder用法 String、StringBuilder、StringBuffer 用法比较String、StringBuilder、StringBuffer 用法比较String、StringBuilder、StringBuffer 用法比较String、StringBuilder、StringBuffer 用法比较String...
Java中的String、StringBuilder和StringBuffer类都是用于处理字符串的,但在不同的场景下,它们各有优缺点。本篇文章将深入分析这三个类的区别。 首先,我们来看它们的值可变性。String类是不可变的,这意味着一旦...
StringBuilder和StringBuffer的异同解析 StringBuilder和StringBuffer是Java中两个常用的字符串处理类,它们都用于字符串的处理和操作,但它们之间存在一些关键的差异。本文将从源码角度对StringBuilder和...
string,stringbuffer,stringbuilder
《Java中的StringBuffer与StringBuilder类详解》 在Java编程中,当我们需要对字符串进行多次修改时,StringBuffer和StringBuilder类成为首选。这两个类提供了一种高效且灵活的方式来处理字符串,与不可变的String类...
在Java编程语言中,String、StringBuilder和StringBuffer都是用来处理字符串的重要类,它们各有特点,适用于不同的场景。这里我们将深入探讨这三个类的区别、特性和使用策略。 首先,String类是不可变的,这意味着...
String、StringBuilder、StringBuffer的区别 在 Java 中,String、StringBuilder 和 StringBuffer 三者都是字符串处理类,但是它们之间存在着本质的区别。本文将从执行速度、线程安全性、字符串处理方式等方面对这...
在Java编程语言中,String、StringBuffer和StringBuilder都是用来处理字符串的重要类,它们各自具有不同的特性和使用场景。下面将详细解析这三个类的区别。 首先,`String`类是最基础的字符串处理类,它被设计为不...
string,stringBuffer,stringBuilder