`
qindongliang1922
  • 浏览: 2183744 次
  • 性别: Icon_minigender_1
  • 来自: 北京
博客专栏
7265517b-f87e-3137-b62c-5c6e30e26109
证道Lucene4
浏览量:117528
097be4a0-491e-39c0-89ff-3456fadf8262
证道Hadoop
浏览量:125921
41c37529-f6d8-32e4-8563-3b42b2712a50
证道shell编程
浏览量:59896
43832365-bc15-3f5d-b3cd-c9161722a70c
ELK修真
浏览量:71301
社区版块
存档分类
最新评论

海量数据去重之SimHash算法简介和应用

    博客分类:
  • JAVA
阅读更多



SimHash是什么
SimHash是Google在2007年发表的论文《Detecting Near-Duplicates for Web Crawling 》中提到的一种指纹生成算法或者叫指纹提取算法,被Google广泛应用在亿级的网页去重的Job中,作为locality sensitive hash(局部敏感哈希)的一种,其主要思想是降维,什么是降维? 举个通俗点的例子,一篇若干数量的文本内容,经过simhash降维后,可能仅仅得到一个长度为32或64位的二进制由01组成的字符串,这一点非常相似我们的身份证,试想一下,如果你要在中国13亿+的茫茫人海中寻找一个人,如果你不知道这个人的身份证,你可能要提供姓名 ,住址, 身高,体重,性别,等等维度的因素来确定是否为某个人,从这个例子已经能看出来,如果有一个一维的核心条件身份证,那么查询则是非常快速的,如果没有一维的身份证条件,可能综合其他几个非核心的维度,也能确定一个人,但是这种查询则就比较慢了,而通过我们的SimHash算法,则就像是给每个人生成了一个身份证,使复杂的事物,能够通过降维来简化。
SimHash的工作原理
SimHash算法工作流程图:





解释下上图:
(1)准备一篇文本
(2)过滤清洗,提取n个特征关键词,这步一般用分词的方法实现,关于分词,比较常用的有IK,mmseg4j,ansj
(3)特征加权,这一步如果有自己针对某个行业的定义的语料库时候可以使用,没有的话,就用分词后的词频即可
(4)对关键词进行hash降维01组成的签名(上述是6位)
(5)然后向量加权,对于每一个6位的签名的每一位,如果是1,hash和权重正相乘,如果为0,则hash和权重负相乘,至此就能得到每个特征值的向量。
(6)合并所有的特征向量相加,得到一个最终的向量,然后降维,对于最终的向量的每一位如果大于0则为1,否则为0,这样就能得到最终的simhash的指纹签名

一个例子如下:






SimHash的应用
通过上面的步骤,我们可以利用SimHash算法为每一个网页生成一个向量指纹,那么问题来了,如何判断2篇文本的相似性?
这里面主要应用到是海明距离。

(1)什么是海明距离
两个码字的对应比特取值不同的比特数称为这两个码字的海明距离。在一个有效编码集中,任意两个码字的海明距离的最小值称为该编码集的海明距离。举例如下:10101和00110从第一位开始依次有第一位、第四、第五位不同,则海明距离为3。

(2)海明距离的几何意义
n位的码字可以用n维空间的超立方体的一个顶点来表示。两个码字之间的海明距离就是超立方体两个顶点之间的一条边,而且是这两个顶点之间的最短距离。

(3)海明距离的应用场景
用于编码的检错和纠错

经过SimHash算法提取来的指纹(Simhash对长文本500字+比较适用,短文本可能偏差较大,具体需要根据实际场景测试),最后使用海明距离,求相似,在google的论文给出的数据中,64位的签名,在海明距离为3的情况下,可认为两篇文档是相似的或者是重复的,当然这个值只是参考值,针对自己的应用可能又不同的测试取值

到这里相似度问题基本解决,但是按这个思路,在海量数据几百亿的数量下,效率问题还是没有解决的,因为数据是不断添加进来的,不可能每来一条数据,都要和全库的数据做一次比较,按照这种思路,处理速度会越来越慢,线性增长。

针对这个问题在Google的论文中也提出了对应的思路,根据鸽巢原理(也称抽屉原理):

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。[1]



道理很简单,但在把这应用到现实问题中,可是能发挥巨大作用的,这也就是数学的奥妙之处。

针对海量数据的去重效率,我们可以将64位指纹,切分为4份16位的数据块,根据抽屉原理在海明距离为3的情况,如果两个文档相似,那么它必有一个块的数据是相等的,如图:




然后将4份数据通过K-V数据库或倒排索引存储起来K为16位截断指纹,V为K相等时剩余的48位指纹集合,查询时候,精确匹配这个指纹的4个16位截断,如图所示:






如此,假设样本库,有2^34条数据(171亿数据),假设数据均匀分布,则每个16位(16个01数字随机组成的组合为2^16个)倒排返回的最大数量为
2^34/2^16=2^(34-16)=262144个候选结果,4个16位截断索引,总的结果为:4*262144=1048576,约为100多万,通过
这样一来的降维处理,原来需要比较171亿次,现在只需要比较100万次即可得到结果,这样以来大大提升了计算效率。


参考文章:
http://www.lanceyan.com/tech/arch/simhash_hamming_distance_similarity.html
http://taop.marchtea.com/06.03.html
http://yanyiwu.com/work/2014/01/30/simhash-shi-xian-xiang-jie.html
http://www.cnblogs.com/colorfulkoala/archive/2012/07/29/2614382.html
http://en.wikipedia.org/wiki/Locality_sensitive_hashing
http://grunt1223.iteye.com/blog/964564
  • 大小: 756.1 KB
  • 大小: 33.1 KB
  • 大小: 130.2 KB
  • 大小: 186.8 KB
  • 大小: 96.7 KB
1
1
分享到:
评论

相关推荐

    simhash算法的java实现simhash-java.zip

    simhash 算法的 java 实现。特点计算字符串的 simhash通过构建智能索引来计算所有字符串之间的相似性,因此可以处理大数据使用使用输入文件和输出文件运行 Maininputfile 的格式(参见 src / test_in):一个文件每...

    Simhash算法在文本去重中的应用-信息熵词频加权1.pdf

    Simhash算法是一种局部敏感哈希算法,广泛应用于文本去重领域。随着大数据时代的到来,信息量爆炸式增长,数据存储空间和时间成本受到重视,因此,如何在有限的资源中存储更多有效精炼的信息成为了研究的热点。文本...

    基于Hadoop和HBase的大规模海量数据去重.zip

    在大数据处理领域,基于Hadoop和HBase的大规模海量数据去重是一个常见的需求。Hadoop是Apache开源项目,提供了一个分布式文件系统(HDFS)和MapReduce计算框架,旨在处理和存储海量数据。HBase是建立在Hadoop之上的...

    java实现中文分词simhash算法

    在IT领域,中文分词和SimHash算法是两种重要的技术,尤其在文本处理和信息检索中发挥着关键作用。本文将深入探讨这两种技术,并结合Java实现进行详细解析。 首先,让我们了解一下**中文分词**。中文不同于英文,...

    基于Simhash算法的海量文本相似性检测方法研究.pdf

    综上所述,本文对Simhash算法在海量文本相似性检测中的应用进行了深入研究,并提出了基于ICT-CIAs分词技术和TF-IDF权重计算方法的改进方案。实验结果表明,该方案不仅能够提高检测性能,而且在相似性计算方面更加...

    论文计算相似度——基于SimHash算法和海明距离

    命令行输入两个txt文件的绝对路径,计算相似度,写进txt文件

    基于python与哈希算法实现图像去重

    本文将深入探讨如何利用Python编程语言和哈希算法来有效地实现图像去重。 首先,我们要理解哈希算法的基本原理。哈希(Hash)算法是一种将任意长度的输入(也叫做预映射)通过一个算法,变换成固定长度的输出,这个...

    Java实现simHash算法

    Java实现simHash算法,对应博客http://www.cnblogs.com/hxsyl/p/4518506.html

    数据去重算法程序源代码

    数据去重算法程序源代码 让原始数据中出现次数超过一次的数据在输出文件中只出现一次

    SimHash代码实现提供C接口

    SimHash是一种在大数据量文本相似度检测中广泛应用的算法,尤其在搜索引擎和推荐系统中有着重要地位。它的核心思想是将文本转化为一个固定长度的哈希值,使得相似的文本具有更接近的哈希值。这里我们将深入探讨...

    simhash_python_文本筛选_simhash_

    在实际应用中,SimHash算法不仅限于网络爬虫的文本去重,还可以用于垃圾邮件过滤、推荐系统、搜索引擎等领域,因为它能够有效地处理大规模数据,且计算效率高。同时,SimHash算法也有一定的抗噪声能力,对文本的小...

    基于云计算的海量数据挖掘分类算法研究.pptx

    本研究旨在探讨基于云计算的海量数据挖掘分类算法的设计和应用,旨在解决海量数据处理和挖掘中的挑战。 云计算是一种分布式计算技术,能够将大量的计算资源和存储资源进行动态分配,为用户提供高可用性、高效率的...

    解析大数据挖掘视域下多维数据去重聚类算法.pdf

    多维数据去重聚类算法是当前大数据分析领域一个重要的研究方向,目的是在海量数据中科学有效地处理数据关系,减少冗余数据,实现精准的数据分类。该算法主要面临的问题包括数据维度问题、数据去重、以及如何在保证...

    基于Bloom Filter的海量数据分布式快速匹配算法研究.pdf

    综上所述,文章讨论了海量数据快速匹配所面临的问题和挑战,并提出了一种基于Bloom Filter的分布式快速匹配算法,该算法通过分布式技术提高了海量数据匹配的效率,减少了对服务器内存的需求,从而解决了制约应用程序...

    去重算法Similarity

    在IT领域,去重算法是数据处理和信息检索中的关键组成部分,主要目的是识别并消除重复的数据,以提高存储效率和数据分析的准确性。本项目提供的"SimilarityAlgorithms"压缩包包含了几种常用的相似性计算方法,包括...

Global site tag (gtag.js) - Google Analytics