- 浏览: 1212404 次
- 性别:
- 来自: 深圳
文章分类
- 全部博客 (1027)
- 拼接字符串小技巧 (1)
- JAVA 模块知识小结 (23)
- Tools (14)
- Android (20)
- ExtJS必学必会 (1)
- Nginx (4)
- 中间件 (9)
- java中间件 (6)
- linux (47)
- 23种设计模式 (15)
- 数据库知识 (15)
- Mycat中间件 (80)
- 华为框架--jalor5 (2)
- 数据库-----DB2 (24)
- 数据库-----ORACLE (47)
- 数据库-----MYSQL (82)
- 大数据 (16)
- 大数据--HBASE (4)
- 大数据--Storm (9)
- 大数据--Hive (5)
- 大数据--Hadoop (11)
- 大数据--ElasticSearch (16)
- 大数据--ZooKeeper (13)
- 大数据--redis (17)
- 大数据--Kafka (26)
- 大数据--MongoDB (9)
- 大数据之Flume (4)
- 大数据--sqoop (3)
- 大数据--SPARK (7)
- 大数据--memcached (1)
- 大数据------Impala (1)
- 大数据--Avro (1)
- 大数据--Apache Pig (1)
- 大数据--Logstash (1)
- 大数据--Kibana 简介 (1)
- 大数据之Impala (1)
- 大数据之Druid-IO介绍 (1)
- 大数据之HUE (1)
- 大数据之Ambari (1)
- 大数据之Presto (1)
- 大数据之Oozie (1)
- 编程语言之Python (4)
- 编程语言--PHP (5)
- 编程语言--Scala (2)
- 编程语言--JAVA之Mybatis (26)
- 编程语言之Ruby (2)
- 编程语言之C (2)
- 编程语言--JAVA之Spring (7)
- 编程语言--JAVA之Struts (1)
- 编程语言JAVA Hibernate (6)
- 编程语言之Kotlin (1)
- 编程语言--JAVA之网络编程 (3)
- 编程语言之Go (3)
- 编程语言之Erlang (1)
- erlang语言 (1)
- 算法研究--查找 (8)
- 算法研究--排序 (10)
- 网络协议 (47)
- 版本控制工具 (6)
- JAVA基础知识 (20)
- 负载均衡 (14)
- Hessian (1)
- 阿里之RocketMQ (5)
- 阿里之Canal (2)
- 阿里之TDDL (1)
- 阿里之DRDS (1)
- 阿里Dubbo框架 (2)
- 阿里JStorm框架 (3)
- 阿里之yugong (2)
- 阿里之Druid框架 (3)
- 阿里之cobar (1)
- Docker (17)
- VPN虚拟专网 (1)
- JFinal (1)
- JAVA语言基础 (23)
- HAProxy简介 (5)
- Netty介绍 (1)
- Squid介绍 (1)
- ZeroMQ (1)
- JVM深入研究 (4)
- Kerberos (1)
- Shiro (1)
- R语言 (2)
- CAS (2)
- Spring Security (1)
- 虚拟化技术 (10)
- python (2)
- Wireshark (1)
- JAVA_WEB 开发 (6)
- I/O模型 (1)
- Apache Mina (1)
- Apache Solr (2)
- Apache Nutch (1)
- Apache nifi (1)
- Apache Phoenix (1)
- Apache Thrift (1)
- Apache --Groovy (2)
- Apache Tika (1)
- Apache JMeter (1)
- Apache 之CouchDB (1)
- Apache之XML-RPC (1)
- 读书笔记 (4)
- 统计分析系统--SAS (1)
- Java Applet (1)
- JAVA之XStream (1)
- java之FreeMarker (1)
- JAVA 之WebWork (1)
- JAVA之velocity 介绍 (1)
- JAVA之Excel的导入(出) (4)
- Node.js (1)
- 信息安全 (2)
- Flex 编程 (1)
- 大数据--Alluxio (1)
- Jenkins (1)
- XDoclet (1)
- Play 框架 (1)
- ESB (2)
- JAVA之SiteMesh (1)
- JAVA 之Tiles (1)
- JAVA之工作流系统 (5)
- Apache之Tajo (1)
- 搜索引擎知识 (1)
- Apache 之Chukwa (1)
- Apache 之 ActiveMQ (2)
- Apache 之Accumulo (1)
- Apache之Lucene (2)
- Apache S4 (2)
- Apache之Tez (1)
- Apache之TOMCAT (3)
- Apache Kylin (1)
- Apache 之Ivy (1)
- Apache之Mesos (1)
- Zenoss (1)
- 阿里妈妈-adhoc之mdrill (1)
- 分布式调用 (5)
- RPC之Zeroc ICE (3)
- Java之RMI (1)
- RPC框架之Apache-XML (1)
- 人工智能系统 (10)
- 构建工具Maven (6)
- 持续集成 (1)
- 缓存技术 (8)
- 数据库之SequoiaDB (1)
- 数据分析 (2)
- 自然语言处理 (10)
- 数据库----MariaDB (1)
- 压缩算法 (2)
- 消息队列之LMAX Disruptor (1)
- 分布式文件系统DFS (1)
- Kubernetes (1)
- 自动化部署框架 (2)
- 分布式文件系统Tachyon (1)
- OpenCV (1)
- 数据库--db4o (1)
- 任务调度--Azkaban (1)
- 消息队列 (3)
- Apache 之 Flink (1)
- 消息队列,StormMQ (1)
- 图形数据库 (1)
- Zuul (1)
- 网站加速 (1)
- CDN (1)
- 数据库之PostgreSQL (2)
- CQRS 命令查询职责分离模式 (1)
- CoreOS--ETCD (1)
- 工作流引擎--Snaker (1)
- HPCC (1)
- 数据库之Greenplum (1)
- 监控系统 (8)
- Neo4j (1)
- Apache之Calcite (1)
- 大数据分享 (4)
- 人工智能分享 (10)
- Apache 之Camel (1)
- Apache之 Crunch (1)
- 分布式缓存 (7)
- Apache 之Etch (1)
- Apache之 Karaf (1)
- Apache 之ODE (1)
- Eclipse安装插件 (1)
- Apache之Qpid (1)
- Apache 之Ranger (1)
- Apache 之Flink (1)
- Apache 之Lens (1)
- Apache之Zeppelin (1)
- Apache 之Mahout (1)
- Apache之 Samza (1)
- Apache 之VCL (1)
- Apache 之Synapse (1)
- Apache 之ORC (1)
- apache之Tapestry (1)
- 射频识别 (2)
- JAVA框架之spark (1)
- Web服务器 Tengine (1)
- web服务器之kangle (1)
- 全文检索 (1)
- Java开发框架之Ninja (1)
- Spring-Boot (2)
- 操作系统底层 (1)
- Java之Web框架Vert.x (1)
- JAVA之NIO框架 (1)
- CORBA (2)
- 敏感词过滤 (1)
- 前端语言 (18)
- 事处理务 (2)
- 网络爬虫 (1)
- 复杂SQL案例 (3)
- 经典理论 (1)
- 容器集群管理系统 (1)
- 代理服务器 (1)
- 微服务框架 (8)
- 编程语言--JAVA之Web (4)
- 存储知识 (2)
- 报表技术 (12)
- Tomcat专题研究 (7)
- 网络知识 (2)
- Web服务器 之WebLogic (2)
- 编程语言--JAVA之Email (5)
- Apache 之Velocity (1)
- java之Javassist (1)
- JAVA之工作流 (3)
- JAVA之Undertow (1)
- JAVA之Grizzly (1)
- java之Spray (1)
- JAVA之验证码 (8)
- JAVA之序列化 (1)
- JAVA 之RESTful (1)
- XML解析 (5)
- RPC框架之Motan (1)
- 数据库之ArangoDB (1)
- 【lanproxy】 (1)
- 【RPC框架之RPCX】 (1)
- RPC框架之gRPC (1)
- JavaWeb之G4Studio (1)
- 区块链 (1)
- Sphinx (1)
- 跟踪系统 (1)
- 多租户 (1)
- 大数据之数据采集应用 (2)
- JAVA 之文件操作 (10)
- 软件测试 (1)
- Apache 之DistributedLog (1)
- Apache 之 Ignite (1)
- 分布式配置中心 (1)
- 【SaaS 介绍】 (1)
- 【数据库之ArangoDB】 (1)
- 【数据处理之ETL】 (1)
- Undertow (1)
- JAX-RS (1)
- 【百度云消息推送】 (1)
- IOS (7)
- Kannel (1)
- ServiceComb (1)
- 微信 (2)
- 规则引擎 (1)
- 短地址 (1)
- Exam (1)
- FastDFS (1)
- Arthas (0)
- 阿里之Arthas (1)
- 阿里之Seata (1)
- 微服务 (1)
- 分布式事务 (1)
- Flink (2)
- Apache-Ranger (1)
- azkaban (1)
- Intellij Idea (1)
- Apache DolphinScheduler (3)
- PMP项目管理 (1)
- sentry介绍 (1)
- 堡垒机 (1)
- 对象存储服务简介 (1)
- prometheus (1)
- Hazelcast (1)
- dolphinscheduler (1)
- PMP (1)
- 数据库之ClickHouse (2)
- Telegraf (1)
- apache之Dolphinscheduler (1)
最新评论
-
gaojingsong:
jstl1point0 写道高级版本JDK可以直接安装不用配置 ...
【win7配置jdk 环境变量】 -
jstl1point0:
高级版本JDK可以直接安装不用配置了
【win7配置jdk 环境变量】 -
hdd901002:
光说明错误在哪里有什么用,解决方法啊。。。我也碰到了,一条jo ...
Mycat源码解读--错误之【can't find table define in schema 】 -
masuweng:
【JAVA之图片水印】 -
masuweng:
【JAVA之多线程下载文件实现】
1、准备文本文件,启动hadoop[root@hadoop0 ~]# cat /opt/test.txt
JieJie
MengMeng
NingNing
JingJing
FengJie
[root@hadoop0 ~]# start-all.sh
Warning: $HADOOP_HOME is deprecated.
starting namenode, logging to /opt/hadoop/libexec/../logs/hadoop-root-namenode-hadoop0.out
localhost: starting datanode, logging to /opt/hadoop/libexec/../logs/hadoop-root-datanode-hadoop0.out
localhost: starting secondarynamenode, logging to /opt/hadoop/libexec/../logs/hadoop-root-secondarynamenode-hadoop0.out
starting jobtracker, logging to /opt/hadoop/libexec/../logs/hadoop-root-jobtracker-hadoop0.out
localhost: starting tasktracker, logging to /opt/hadoop/libexec/../logs/hadoop-root-tasktracker-hadoop0.out
2、进入命令行[root@hadoop0 ~]# hive
WARNING: org.apache.hadoop.metrics.jvm.EventCounter is deprecated. Please use org.apache.hadoop.log.metrics.EventCounter in all the log4j.properties files.
Logging initialized using configuration in jar:file:/opt/hive/lib/hive-common-0.9.0.jar!/hive-log4j.properties
Hive history file=/tmp/root/hive_job_log_root_201509252001_1674268419.txt
3、查询昨天的表hive> select * from stu;
OK
JieJie 26 NULL
MM 24 NULL
Time taken: 17.05 seconds
4、显示数据库hive> show databases;
OK
default
Time taken: 0.237 seconds
5、创建数据库hive> create database test;
OK
Time taken: 0.259 seconds
hive> show databases;
OK
default
test
6、使用数据库Time taken: 0.119 seconds
hive> use test;
OK
Time taken: 0.03 seconds
7、创建表textfile 默认格式,数据不做压缩,磁盘开销大,数据解析开销大。
可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。
SequenceFile是Hadoop API提供的一种二进制文件支持,其具有使用方便、可分割、可压缩的特点。
SequenceFile支持三种压缩选择:NONE, RECORD, BLOCK。 Record压缩率低,一般建议使用BLOCK压缩
rcfile是一种行列存储相结合的存储方式。首先,其将数据按行分块,保证同一个record在一个块上,避免读一个记录需要读取多个block。其次,块数据列式存储,有利于数据压缩和快速的列存取。
hive> create table test1(str STRING) STORED AS TEXTFILE;
OK
Time taken: 0.598 seconds
--加载数据
hive> LOAD DATA LOCAL INPATH '/opt/test.txt' INTO TABLE test1;
Copying data from file:/opt/test.txt
Copying file: file:/opt/test.txt
Loading data to table test.test1
OK
Time taken: 1.657 seconds
hive> select * from test1;
OK
JieJie
MengMeng
NingNing
JingJing
FengJie
Time taken: 0.388 seconds
hive> select count(*) from test1;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapred.reduce.tasks=<number>
Starting Job = job_201509252000_0001, Tracking URL = http://hadoop0:50030/jobdetails.jsp?jobid=job_201509252000_0001
Kill Command = /opt/hadoop/libexec/../bin/hadoop job -Dmapred.job.tracker=hadoop0:9001 -kill job_201509252000_0001
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2015-09-25 20:09:55,796 Stage-1 map = 0%, reduce = 0%
2015-09-25 20:10:19,806 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.67 sec
2015-09-25 20:10:53,218 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 6.95 sec
2015-09-25 20:10:54,223 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 6.95 sec
MapReduce Total cumulative CPU time: 6 seconds 950 msec
Ended Job = job_201509252000_0001
MapReduce Jobs Launched:
Job 0: Map: 1 Reduce: 1 Cumulative CPU: 6.95 sec HDFS Read: 258 HDFS Write: 2 SUCCESS
Total MapReduce CPU Time Spent: 6 seconds 950 msec
OK
5
Time taken: 77.515 seconds
create table test1(str STRING) STORED AS TEXTFILE;
create table test2(str STRING) ;
hive> create table test3(str STRING) STORED AS SEQUENCEFILE;
OK
Time taken: 0.112 seconds
hive> create table test4(str STRING) STORED AS RCFILE;
OK
Time taken: 0.502 seconds
8、把旧表数据导入新表INSERT OVERWRITE TABLE test4 SELECT * FROM test1;
9、设置hive参数hive> SET hive.exec.compress.output=true;
hive> SET io.seqfile.compression.type=BLOCK;
10、查看hive参数 hive> SET ;
JieJie
MengMeng
NingNing
JingJing
FengJie
[root@hadoop0 ~]# start-all.sh
Warning: $HADOOP_HOME is deprecated.
starting namenode, logging to /opt/hadoop/libexec/../logs/hadoop-root-namenode-hadoop0.out
localhost: starting datanode, logging to /opt/hadoop/libexec/../logs/hadoop-root-datanode-hadoop0.out
localhost: starting secondarynamenode, logging to /opt/hadoop/libexec/../logs/hadoop-root-secondarynamenode-hadoop0.out
starting jobtracker, logging to /opt/hadoop/libexec/../logs/hadoop-root-jobtracker-hadoop0.out
localhost: starting tasktracker, logging to /opt/hadoop/libexec/../logs/hadoop-root-tasktracker-hadoop0.out
2、进入命令行[root@hadoop0 ~]# hive
WARNING: org.apache.hadoop.metrics.jvm.EventCounter is deprecated. Please use org.apache.hadoop.log.metrics.EventCounter in all the log4j.properties files.
Logging initialized using configuration in jar:file:/opt/hive/lib/hive-common-0.9.0.jar!/hive-log4j.properties
Hive history file=/tmp/root/hive_job_log_root_201509252001_1674268419.txt
3、查询昨天的表hive> select * from stu;
OK
JieJie 26 NULL
MM 24 NULL
Time taken: 17.05 seconds
4、显示数据库hive> show databases;
OK
default
Time taken: 0.237 seconds
5、创建数据库hive> create database test;
OK
Time taken: 0.259 seconds
hive> show databases;
OK
default
test
6、使用数据库Time taken: 0.119 seconds
hive> use test;
OK
Time taken: 0.03 seconds
7、创建表textfile 默认格式,数据不做压缩,磁盘开销大,数据解析开销大。
可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。
SequenceFile是Hadoop API提供的一种二进制文件支持,其具有使用方便、可分割、可压缩的特点。
SequenceFile支持三种压缩选择:NONE, RECORD, BLOCK。 Record压缩率低,一般建议使用BLOCK压缩
rcfile是一种行列存储相结合的存储方式。首先,其将数据按行分块,保证同一个record在一个块上,避免读一个记录需要读取多个block。其次,块数据列式存储,有利于数据压缩和快速的列存取。
hive> create table test1(str STRING) STORED AS TEXTFILE;
OK
Time taken: 0.598 seconds
--加载数据
hive> LOAD DATA LOCAL INPATH '/opt/test.txt' INTO TABLE test1;
Copying data from file:/opt/test.txt
Copying file: file:/opt/test.txt
Loading data to table test.test1
OK
Time taken: 1.657 seconds
hive> select * from test1;
OK
JieJie
MengMeng
NingNing
JingJing
FengJie
Time taken: 0.388 seconds
hive> select count(*) from test1;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapred.reduce.tasks=<number>
Starting Job = job_201509252000_0001, Tracking URL = http://hadoop0:50030/jobdetails.jsp?jobid=job_201509252000_0001
Kill Command = /opt/hadoop/libexec/../bin/hadoop job -Dmapred.job.tracker=hadoop0:9001 -kill job_201509252000_0001
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2015-09-25 20:09:55,796 Stage-1 map = 0%, reduce = 0%
2015-09-25 20:10:19,806 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.67 sec
2015-09-25 20:10:53,218 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 6.95 sec
2015-09-25 20:10:54,223 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 6.95 sec
MapReduce Total cumulative CPU time: 6 seconds 950 msec
Ended Job = job_201509252000_0001
MapReduce Jobs Launched:
Job 0: Map: 1 Reduce: 1 Cumulative CPU: 6.95 sec HDFS Read: 258 HDFS Write: 2 SUCCESS
Total MapReduce CPU Time Spent: 6 seconds 950 msec
OK
5
Time taken: 77.515 seconds
create table test1(str STRING) STORED AS TEXTFILE;
create table test2(str STRING) ;
hive> create table test3(str STRING) STORED AS SEQUENCEFILE;
OK
Time taken: 0.112 seconds
hive> create table test4(str STRING) STORED AS RCFILE;
OK
Time taken: 0.502 seconds
8、把旧表数据导入新表INSERT OVERWRITE TABLE test4 SELECT * FROM test1;
9、设置hive参数hive> SET hive.exec.compress.output=true;
hive> SET io.seqfile.compression.type=BLOCK;
10、查看hive参数 hive> SET ;
相关推荐
在本实验报告中,我们关注的是大数据处理工具Hive的基础操作,主要涵盖了创建表、导入数据以及使用Hive进行数据管理。Hive是基于Hadoop的数据仓库工具,它允许通过SQL-like查询语言(HQL)对分布式存储的大数据集...
这样可以在命令行直接使用Hive命令。 8. Hive的运行通常涉及到启动Hive服务,可以通过命令`hive`进入Hive命令行界面进行操作,也可以使用`beeline`。 9. 文件中提到的地址信息“北京市丰台区丰台南路永乐文化产业...
在Windows 10环境下搭建大数据测试环境,Hive是一个常用的数据仓库工具,它通常与Linux系统结合使用。然而,对于Windows用户来说,由于Hive原生不支持Windows,所以传统方法需要借助Cygwin这样的模拟Linux环境来运行...
### 大数据Java操作Hive知识点详解 #### 一、Hive简介与基本配置 **Hive** 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的 SQL 查询功能,可以将 SQL 语句转换为 ...
3. **安装与配置**:详述在各种操作系统环境下安装Hive和其依赖的Hadoop组件的步骤,以及配置Hive环境变量和配置文件。 4. **HQL(Hive Query Language)**:学习Hive的SQL方言,包括DML(数据操纵语言)、DDL...
首先,Hive是一种基于Hadoop的大数据处理工具,它提供了SQL-like的查询接口,使得对大数据的操作更加简便。在进行Hive操作时,需确保虚拟机上的Hive数据库可以正常连接。如果因为未使用quit;命令退出导致第二次进入...
5. **启动Hive**:启动Hive Server2和Hive Metastore服务,可以通过`hive`命令进入交互式shell。 **MySQL介绍** MySQL是一种快速、可靠且易于使用的开源数据库,支持ACID(原子性、一致性、隔离性和持久性)特性,...
Hive 提供了一个称为 Hive Shell 的交互式环境,用于执行 Hive 查询和管理 Hive 对象。本文将详细介绍 Hive Shell 的基本操作。 ### 初始 Hive 首先,你需要安装和配置 Hive。Hive 的安装通常包括将 Hive 的二进制...
在Hadoop环境下,可以通过编写Shell命令来操作HDFS文件系统。例如,使用hadoop fs-ls命令列出目录内容,使用hadoop fs-mkdir命令创建目录,使用hadoop fs-mv命令移动或重命名文件和目录。Hadoop还提供了API接口,...
在构建大数据处理环境时,Hadoop、HBase、Spark和Hive是四个核心组件,它们协同工作以实现高效的数据存储、处理和分析。本教程将详细介绍如何在Ubuntu系统上搭建这些组件的集群。 1. **Hadoop**:Hadoop是Apache...
Hive 是一个基于 Hadoop 的数据仓库工具,它可以将结构化的数据文件映射为一张数据库表,并提供简单的 SQL 查询功能,方便数据分析师进行大数据处理。本文将详细介绍如何在大数据集群上搭建 Hive,主要包括三种运行...
适用人群:适用于初学者和有一定经验的大数据技术从业者,特别是需要搭建Hive环境的开发者和技术支持人员。 使用场景及目标:①初次部署Hive集群的企业;②个人研究和学习Hive的开发者。通过对本文的学习,可以独立...
Hadoop 是一个开源框架,主要用于存储和处理大规模数据,而 Hive 则是构建在 Hadoop 上的数据仓库工具,它提供了 SQL 式的查询语言(HQL)来方便地对大数据进行分析。本章节将深入探讨 Hive 的组件、部署以及基本的...
6. 将Hive的安装目录和bin目录加入到系统的环境变量中,这样可以在任何路径下使用Hive命令。这通常在/etc/profile文件中完成。 7. 启动和关闭Hadoop集群的命令,包括启动YARN和HDFS的脚本以及停止它们的脚本,这些...
5. **性能评估**:监控Hive查询的执行时间和资源消耗,评估Hive在大数据环境下的处理效率。 6. **扩展性测试**:随着数据的增长,测试Hive在处理更大规模数据时的表现,考察其横向扩展能力。 通过以上步骤,我们...
5. **Hive Web Interface (WebHive)**:一个基于Web的界面,用户可以通过浏览器直接执行HQL查询,查看结果,方便了非命令行用户的操作。 6. **文档**:安装包可能包含了详细的用户手册、开发者指南和API文档,帮助...
在大数据处理领域,Hive是一个非常重要的工具,它提供了对大规模数据集的SQL查询能力,使得非编程背景的用户也能方便地操作数据。...通过深入学习这些资料,你将更好地理解和掌握Hive在大数据环境中的作用和使用方式。
以上内容涵盖了关于 Hive 学习的基础知识,包括其架构、与 Hadoop 和传统数据库的关系、元数据库的选择、数据存储方式以及基本操作命令等。通过深入理解这些概念和技术细节,可以帮助用户更好地掌握 Hive 的使用方法...
在大数据环境下,Hive通过分布式计算模型处理PB级别的数据。其支持SQL查询,使得非编程背景的分析师也能操作大数据。Hive的MapReduce或Tez执行引擎可以并行处理任务,提高处理速度。此外,Hive的分区和桶表策略能...
"大数据环境一键安装脚本.zip" 提供了一种自动化的方式来设置和配置大数据环境,极大地简化了传统手动安装过程中的复杂性。这个压缩包文件"automaticDeploy-master"很可能是包含了一个完整的自动化部署项目,下面将...