`
mx19841031
  • 浏览: 76098 次
  • 性别: Icon_minigender_2
  • 来自: 西安
社区版块
存档分类
最新评论

kmeans算法java实现

阅读更多

K-MEANS算法:
k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

具体如下:
输入:k, data[n];
(1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1];
(2) 对于data[0]….data[n], 分别与c[0]…c[n-1]比较,假定与c[i]差值最少,就标记为i;
(3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数;
(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。

算法实现起来应该很容易,就不帮你编写代码了。


1. 什么是 k-means 聚类算法

 

  从网上找到了很多定义,这里选取比较典型的几个;

  K-Mean 分群法是一种分割式分群方法,其主要目标是要在大量高纬的资料点中找出

       具有代表性的资料点;这些资料点可以称为群中心,代表点;然后再根据这些

        群中心,进行后续的处理,这些处理可以包含

   1 )资料压缩:以少数的资料点来代表大量的资料,达到资料压缩的功能;

   2 )资料分类:以少数代表点来代表特点类别的资料,可以降低资料量及计算量;

 

   

 

2 .处理流程

1   c 个数据对象任意选择 k 个对象作为初始聚类中心;
2   循环( 3 )到( 4 )直到每个聚类不再发生变化为止;
3   根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;
4   重新计算每个(有变化)聚类的均值(中心对象)

 

 

3. java 算法的实现说明

  1) 假设给点一组 c 点资料 X = {x1, ..., xc} ,每一点都有 d 维;给定一个群聚的数目 k, 求其

     最好的聚类结果。

  2 BasicKMeans.java 主类

        int coordCount = 250;// 原始的资料个树

        int dimensions = 100;// 每个资料的纬度数目

        double[][] coordinates = new double[coordCount][dimensions];

  这里假设 c 点资料为 coordinates 对象,其中 c coordCount,d dimensions 相应值。

        int mk = 30; // 想要群聚的数目

   根据群聚数目定义 mk 个群聚类对象

      mProtoClusters = new ProtoCluster[mK];// ProtoCluster 类说明

   // 首先随机选取 mk 个原始资料点作为群聚类

     mProtoClusters[i]= new ProtoCluster (coordinates[j] );//i 依此为 0 mk 的值; j 0 coordCount 的值

  定义一个变量用于记录和跟踪每个资料点属于哪个群聚类

    mClusterAssignments = new int[coordCount];

    mClusterAssignments[j]=i;// 表示第 j 个资料点对象属于第 i 个群聚类

   // 开始循环

  •    // 依次调用计算每个群聚类的均值

   mProtoClusters[i].updateCenter(mCoordinates);// 计算第 i 个聚类对象的均值

 

  •    // 依次计算每个资料点到中心点的距离,然后根据最小值划分到相应的群集类中;

  采用距离平方差来表示资料点到中心点的距离;

   //定义一个变量,来表示资料点到中心点的距离

   mDistanceCache = new double[coordCount ][mk];

    //其中mDistanceCache[i][j]表示第i个资料点到第j个群聚对象中心点的距离;

    //距离算法描述():

     a)依次取出每个资料点对象double[] coord = coordinates[i];

        b)再依次取出每个群聚类中的中心点对象double[] center = mProtoClusters[j].mCenter;

        c)计算coord对象与center对象之间的距离 

     double distance(double[] coord, double[] center) {
        int len = coord.length;
        double sumSquared = 0.0;
        for (int i=0; i<len; i++) {
            double v = coord[i] - center[i];
            sumSquared += v*v; //平方差
        }
        return Math.sqrt(sumSquared);
      } 

     d)循环执行上面的流程,把结果记录在mDistanceCache[i][j]中;

  •       //比较出最小距离,然后根据最小距离重新对相应对象进行划分

     依次比较每个资料点的 最短中心距离,
      int nearestCluster(int ndx) {
        int nearest = -1;
        double min = Double.MAX_VALUE;  
        for (int c = 0; c < mK; c++) {
                double d = mDistanceCache[ndx][c];
                if (d < min) {
                    min = d;
                    nearest = c;
                }          
           }
        return nearest;
       }
  该方法返回该资料点对应的最短中心距离的群聚类的索引值;
  比较每个 nearestCluster[coordCount] 的值和mClusterAssignments[coordCount]
  的值是否相等,如果全相等表示所有的点已经是最佳距离了,直接返回;
  否则需要重新调整资料点和群聚类的关系,调整完毕后再重新开始循环;

  调整时需要更新下列数据:

    a)更新mProtoClusters[i]中的mCurrentMembership集合;

       b)更新mClusterAssignments[i]中对应的值;

   然后重行开始循环

   3 ProtoCluster.java 是一个包含代表点的群聚类,该类有两个最主要的属性"代表点"和"群中心";

         int[] mCurrentMembership;// 用于表示每个群聚包含的数据资料点集合

        double[] mCenter;// 用于表示每个聚类对象的均值,也就是中心对象

         void updateCenter(double[][] coordinates) {

       // 该方法计算 聚类对象的均值 ;

        // 根据 mCurrentMembership 取得原始资料点对象 coord ,该对象是 coordinates 的一个子集;然后取出该子集的均值;

    取均值的算法很简单,可以把 coordinates 想象成一个 m*n 的距阵 , 每个均值就是每个纵向列的取和平均值 , 该值保

    存在 mCenter

       for (int i=0; i< mCurrentMembership.length; i++) {

               double[] coord = coordinates[mCurrentMembership[i]];

               for (int j=0; j<coord.length; j++) {

                        mCenter[j] += coord[j];// 得到每个纵向列的和;

               }

               f or (int i=0; i<mCenter.length; i++) {

                    mCenter[i] /= mCurrentSize; // 对每个纵向列取平均值

                }

           } 

分享到:
评论

相关推荐

    java实现k-means算法

    Java 实现 K-Means 算法是一个在数据挖掘领域常见的任务,它主要用于聚类分析,即将数据分组成不同的类别或簇。K-Means 是一种迭代算法,旨在找到数据点的最佳分配,使得每个簇内的数据点尽可能相似,而不同簇之间的...

    kmeans算法代码实现(java)

    在Java中实现KMeans算法,你需要考虑以下几个关键点: 1. **数据结构**:首先,你需要定义一个表示样本点的数据结构,通常包含样本的特征向量。同时,还需要一个数据结构来存储每个类别的信息,包括类别编号、质心...

    KMeans算法java代码

    KMeans算法是机器学习的经典算法,该文档实现了KMeans算法,文档中的数据是为了实现算法随机构造的。

    kmeans聚类算法的java实现

    在Java中实现KMeans算法,我们可以利用编程语言的强大功能来处理大规模数据集,并将其应用于实际问题,如本例中的数据库字段分组。 1. **KMeans算法基本原理**: KMeans算法主要包含以下步骤: - 初始化:选择K个...

    kmeans算法java源码工程简单实例,解压即可运行

    以下是关于KMeans算法及其Java实现的详细解释。 KMeans算法概述: KMeans算法是一种迭代的、基于距离的聚类算法。它的目标是将n个数据点分成k个不同的簇,每个数据点属于最近的簇中心。算法主要包含两个步骤:初始...

    基于15个国家的世界杯排名的Kmeans算法实现

    《基于15个国家世界杯排名的KMeans算法实现详解》 KMeans算法,作为一种经典的无监督学习方法,广泛应用于数据聚类。在这个项目中,我们利用KMeans算法对15个国家的世界杯排名进行分析,旨在揭示隐藏在数据背后的...

    基于kmeans算法的宿舍分配系统

    前端react 后端springboot 数据库mysql

    用MapReduce实现KMeans算法

    7. **Java实现**: 使用Java编程语言实现MapReduce任务,需要继承`org.apache.hadoop.mapreduce.Mapper`和`org.apache.hadoop.mapreduce.Reducer`类,重写`map()`和`reduce()`方法。同时,需要利用Hadoop的API进行...

    kmeans聚类java实现附测试数据及结果

    下面我们将深入探讨KMeans聚类的基本原理、Java实现的关键步骤以及如何进行测试和分析结果。 KMeans算法的核心思想是通过迭代过程将数据点分配到最近的聚类中心,然后更新这些中心为该聚类所有点的平均值。主要步骤...

    Kmeans_kmeans算法_

    在Java实现KMeans算法时,我们需要考虑以下关键部分: 1. 数据结构:为了存储数据点,可以使用二维数组或自定义的数据结构,如`Point`类,包含每个点的坐标。 2. 距离计算:KMeans算法通常使用欧氏距离,但也可能...

    Spark中机器学期之KMeans算法实战讲解

    在Spark中,我们可以通过MLlib库来实现KMeans算法。 1. **初始化质心**:KMeans算法首先需要选择K个初始质心,这可以随机选择,也可以使用K-means++等方法以减少陷入局部最优的风险。K-means++方法通常能获得较好的...

    Kmeans文本聚类java实现

    KMeans算法是其中广泛应用的一种聚类算法,因其简单、高效而受到青睐。在Java环境中实现KMeans算法进行文本聚类,可以为大数据分析、信息检索和推荐系统等应用场景提供有力支持。 KMeans算法的基本思想是通过迭代...

    Kmeans-java.zip_JAVA 聚类_k均值聚类 java_聚类KMEANS算法_高斯聚类 JAVA

    这个Java实现可以帮助开发者理解K均值算法的底层逻辑,并将其集成到自己的项目中。例如,可以用于市场细分、图像分割、文档分类等场景。 在实际应用中,需要考虑以下优化策略: - 使用更好的质心初始化方法,如K-...

    hadoop下的kmeans算法实现

    接下来,我们将深入探讨Hadoop环境下KMeans算法的实现原理、步骤以及实际应用。 一、Hadoop框架简介 Hadoop是基于Java开发的,其核心组件包括Hadoop Distributed File System (HDFS) 和 MapReduce。HDFS提供分布式...

    java kmeans聚合算法

    在本例中,描述提到了从Pascal语言转换到Java实现,这意味着我们将讨论如何在Java环境下构建KMeans算法来处理坐标数据,如找出一千个坐标的重心点。 KMeans算法的基本步骤如下: 1. **初始化**:选择K个初始质心...

    hadoop并行化和非并行化的kmeans算法.zip

    包含两种平台上运行的kmeans算法:一种是在Hadoop系统上的并行化kmeans算法,支持读文件,执行聚类算法,输出质心文件,将每个数据的聚类信息输出到控制台上;另一种是串行的聚类算法,支持读文件数据,执行kmeans...

    Kmeans.rar_K._java实现Kmeans_聚类KMEANS算法

    用java语言实现的kmeans算法,将n个点分成k个聚类。

    详解Java实现的k-means聚类算法

    Java实现的k-means聚类算法详解 k-means聚类算法是一种常用的无监督学习算法,用于对数据进行聚类分析。该算法的主要思想是将相似的数据点聚类到一起,形成不同的簇。Java语言是实现k-means聚类算法的不二之选。 ...

    java实现KMeans算法代码

    使用纯java实现KMeans模拟算法代码,随即撒点,计算K个聚类,使用了javaFX绘图工具包,结果有散点图的显示

Global site tag (gtag.js) - Google Analytics