`
m635674608
  • 浏览: 5055276 次
  • 性别: Icon_minigender_1
  • 来自: 南京
社区版块
存档分类
最新评论

ikanalyzer 词频计算

 
阅读更多
package com.test;

import java.io.IOException;
import java.io.Reader;
import java.io.StringReader;
import java.util.Arrays;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.jsoup.nodes.Element;
import org.jsoup.select.Elements;
import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;

import com.test.entity.ArticleThesaurus;

public class IkAnalyzerTest {
	public static void main(String[] args) {
//		String str = "铜管方<a href='http://auto.ifeng.com/' target='_blank'><font color='#004276'>面</font></a>,3月铜管企业开工率为85.54%,4月达88%。据了解,由于3月铜价低迷,铜管企业提前备货,精铜需求提前放量。"
//				+ "3月铜杆线企业开工率为72.47%,4月上升至76%。开工率上行,"
//				+ "但前期备货并不充足,导致现货市场集中采购增加,供应紧张凸显。fdsf紫铜铜inf的说法都是紫铜,"
//				+ "我勒个去黄铜恩恩黄铜哈哈哈黄铜铜,我勒个去白铜,范德萨范德萨发白铜,古代有很多人用青铜器,是的就是这个东西它的名字是一种金属叫青铜。";
		//System.out.println("Jane Campion directed \"The Piano\" in 1993.");
		String str="由于对经济形势的的担忧,市场一直低迷,各方面消息被吸<a href='http://www.test.cn/quote/'>铜价</a> 收,市场经济困难局面早已被认同," +
				"随着各国政策的出台实施及各经济数据的公布,担忧情绪渐缓,沪铝即将迎来谷底反弹的时机。
  </p> <p> 操作思路<img src=\"####\" alt=\"锻铜铍铜\" />" +
				"15500<a href='http://www.test.cn/product/tjthj_ht/'>黄铜</a>锻铜以下紫铜板多单继续持有,15575以下果断购入多单,止损15250价位," +
				"如果突破15750价位并站稳,可继续加仓购入多单。<img src=\"www.baidu.com\" alt=\"范德萨发生的\" />";
		Pattern p = Pattern.compile("</?(A|a)(\n|.)*?>");
		Matcher m = p.matcher(str);
		str = m.replaceAll("");
		System.out.println("清除所有a标签:"+str);
	
		
		System.out.println("分词后:"+ikAnalyzer(str));
		String afterFcStr = ikAnalyzer(str); // 分词后的字符串

		// 计算词频
		Map<String, Integer> words = new HashMap<String, Integer>();
		IKSegmenter seg = new IKSegmenter(new StringReader(afterFcStr), true);
		try {
			Lexeme l = null;
			while ((l = seg.next()) != null) {
				if (words.containsKey(l.getLexemeText()))
					words.put(l.getLexemeText(),
							words.get(l.getLexemeText()) + 1);
				else
					words.put(l.getLexemeText(), 1);
			}
		} catch (IOException e) {
			e.printStackTrace();
		}

		 for (Map.Entry<String, Integer> entry : words.entrySet()) {
		 System.out.println("key= " + entry.getKey() + " and value= "
		 + entry.getValue());
		 }

		 Integer count=words.get("铜价");
		 if(count!=null){
		 System.out.println("该词频:"+count);
		 }else{
		 System.out.println("该词频不存在");
		 }
    //添加文章内链 一篇文章不超过五个内链 多个关键词 只替换一个关键词
		List<ArticleThesaurus> listKeyWord = new LinkedList<ArticleThesaurus>();
		ArticleThesaurus at1 = new ArticleThesaurus("铜", "http://www.test.cn");
		ArticleThesaurus at2 = new ArticleThesaurus("铜价","http://www.test.cn/quote/");
		ArticleThesaurus at3 = new ArticleThesaurus("紫铜",
				"http://www.test.cn/product/tjthj_ct_zt/");
		ArticleThesaurus at4 = new ArticleThesaurus("黄铜",
				"http://www.test.cn/product/tjthj_ht/");
		ArticleThesaurus at5 = new ArticleThesaurus("白铜",
				"http://www.test.cn/product/tjthj_bt/");
		ArticleThesaurus at6 = new ArticleThesaurus("青铜",
				"http://www.test.cn/product/tjthj_qt/ ");
		listKeyWord.add(at1);
		listKeyWord.add(at2);
		listKeyWord.add(at3);
		listKeyWord.add(at4);
		listKeyWord.add(at5);
		listKeyWord.add(at6);

		String newStr ;
		newStr = afterFcStr;
		String article[] = afterFcStr.split("\\|");
		int successcount = 0;
		for (int i = 0; i < listKeyWord.size(); i++) {
			if (successcount == 5) {
				break;
			}
			String wordname = listKeyWord.get(i).getWord();
			Map<String, Integer> map = new LinkedHashMap<String, Integer>(); // 防止重复添加内链
			for (int j = 0; j < article.length; j++) {

				if (wordname.equals(article[j])) {
					if (map.get(wordname)== null) {
						map.put(wordname, 1);
						Arrays.fill(article, j, j + 1, "<a href='"
								+ listKeyWord.get(i).getUrl() + "'>" + wordname
								+ "</a>");
						successcount++;
					}
				}

			}
		}

		// for(int i=0;i<listKeyWord.size();i++){
		// String wordname=listKeyWord.get(i).getWord();
		// Integer count=words.get(wordname);
		// if(successcount==5){
		// break;
		// }
		// if(count!=null){
		// //System.out.println("该词频:"+count);
		// newStr=newStr.replaceFirst(wordname,
		// "<a href='"+listKeyWord.get(i).getUrl()+"'>"+wordname+"</a>");
		// successcount++;
		// }else{
		// //System.out.println("该词频不存在");
		// }
		// }
		System.out.println("内链优化后的文章:" + Arrays.toString(article));
		StringBuilder StrArticle=new StringBuilder();
		for(int i=0;i<article.length;i++){
			StrArticle.append(article[i]);
		}
		//System.out.println("被优化多少个内链:"+successcount);
		//System.out.println("内链优化后的文章字符串:" + StrArticle);
		String endStr=StrArticle.toString();
		if(successcount==0){	//可能分词导致部分关键词没有匹配到 则采用绝对字符匹配
			for (int i = 0; i < listKeyWord.size(); i++) {
				//判断文章里的超链接数
				int acount=occurTimes(endStr,"href=");
				if(acount==5){
					break;
				}
				String wordname = listKeyWord.get(i).getWord();
				endStr=endStr.replaceFirst(wordname, "<a href='"
								+ listKeyWord.get(i).getUrl() + "'>" + wordname
								+ "</a>");
				
			}
		}
		
		//去除alt标签内的a内链
		System.out.println("内链优化后的文章字符串:"+endStr);
		Document doc = Jsoup.parseBodyFragment(endStr); // or Jsoup.parse(...);
		Elements images = doc.select("img");
		
		List<String> listAltStr=new LinkedList<String>();
		
		for(Element image : images){
		   // System.out.printf("%s:%s%n", image.attr("src"), image.attr("alt"));
			//System.out.println(image.attr("alt"));
			
			String altStr=image.attr("alt");
			Pattern p1 = Pattern.compile("</?(A|a)(\n|.)*?>");
			Matcher m1 = p.matcher(altStr);
			altStr = m1.replaceAll("");
			listAltStr.add(altStr);
			image.attr("alt", altStr);
			
			//System.out.println(altStr);
		}
		doc.select("img").listIterator(); 
		System.out.println("end内链优化后的文章字符串:" + doc.select("body").html());
	}
	
	/**
	 * 字符在字符串中出现的次数
	 * 
	 * @param string
	 * @param a
	 * @return
	 */
	public static int occurTimes(String string, String a) {
	    int pos = -2;
	    int n = 0;
	 
	    while (pos != -1) {
	        if (pos == -2) {
	            pos = -1;
	        }
	        pos = string.indexOf(a, pos + 1);
	        if (pos != -1) {
	            n++;
	        }
	    }
	    return n;
	}

	public static String ikAnalyzer(String str) {

		Reader input = new StringReader(str);
		// 智能分词关闭(对分词的精度影响很大)
		IKSegmenter iks = new IKSegmenter(input, true);
		Lexeme lexeme = null;
		StringBuilder sb = new StringBuilder();

		try {
			while ((lexeme = iks.next()) != null) {

				sb.append(lexeme.getLexemeText()).append("|");
			}
		} catch (IOException e) {
			e.printStackTrace();
		}

		return sb.toString();
	}

}

 http://skyfar666.iteye.com/blog/2087029

分享到:
评论

相关推荐

    IKAnalyzer中文分词计算句子相似度

    IKAnalyzer_Demo可能是一个包含示例代码的压缩包,用于演示如何使用IKAnalyzer进行中文分词以及计算句子相似度。在实践中,开发者通常会先配置IKAnalyzer,加载词典,然后对输入的句子进行分词,接着选择一种相似度...

    IK Analyzer 2012FF_u1.rar

    3. 在Solr的schema.xml中配置Analyzer,指定使用IKAnalyzer,并根据需要配置词典和参数。 4. 重启Solr服务,使更改生效。 总的来说,IK Analyzer 2012FF_hf1是专为Solr4.x设计的优化版分词器,它提供了高效的中文...

    中文分词库 IKAnalyzer源码

    IKAnalyzer 使用基于字典匹配和正向最大匹配(MaxMatch)算法,结合词频统计和上下文信息,实现高效且准确的分词效果。 2. **源码结构分析** - `src` 目录包含了 IKAnalyzer 的核心源代码,包括词典管理、分词器、...

    word分词器、ansj分词器、mmseg4j分词器、ik-analyzer分词器分词效果评估

    本话题将深入探讨四种常用的Java分词工具:word分词器、ansj分词器、mmseg4j分词器以及ik-analyzer,以及它们在实际应用中的效果评估。 首先,ansj分词器是由李弄潮开发的一款开源分词工具,它具有强大的词典支持和...

    ikanalyzersearch:Android IK_Analyzer 利用中文分词工具IK_Analyzer对输入词和预置词典进行分词后匹配词典中最相近的结果(匹配词典结果按匹配度排序)

    IK_Analyzer采用了基于词频的分词方法,能够智能识别出常见的成语、短语以及新词。同时,它支持动态加载词典,使得应用能够根据实时更新的数据进行动态调整。在匹配策略上,ikanalyzersearch可能会采用如Jaccard...

    Javaweb课程作业基于Hadoop的中文词频统计工具源码+使用说明.zip

    (2)mvn install:install-file -DgroupId=org.wltea.ik-analyzer -DartifactId=ik-analyzer -Dversion=2012_u6 -Dpackaging=jar -Dfile=IKAnalyzer2012_u6.jar (3)在项目的pom.xml里用以下内容引入依赖: &lt;!-- IK...

    基于Hadoop的文本相似度计算

    在这个项目中,我们利用TF-IDF(词频-逆文档频率)和向量空间模型来计算文本之间的相似性,同时采用IKAnalyzer作为中文分词工具。 TF-IDF是一种统计方法,用于评估一个词对于文档集或语料库中的某篇文档的重要程度...

    Spark大数据中文分词统计Scala语言工程源码

    本文将深入探讨一个基于Spark的Scala项目,该工程利用IKAnalyzer分词组件实现对唐诗宋词等国学经典的中文分词统计,并进行了排序,让我们能够了解这些古典文学作品中最常出现的词汇。 首先,Spark是大数据处理框架...

    c#写的关于分词使用Lucene.net

    例如,对于中文,可以使用IKAnalyzer、SmartChineseAnalyzer等专门为中文设计的Analyzer,它们能够识别中文的词语边界,而不是简单地按字符分割。 3. **去除停用词**:在创建索引的过程中,往往需要去除停用词,...

    tfidf所需插件和测试文件

    2. **计算词频(Term Frequency, TF)**:对于每个文档,统计每个词出现的次数,然后除以文档的总词数,得到词频。 3. **计算逆文档频率(Inverse Document Frequency, IDF)**:对整个文档集合,统计包含某个词的...

    Java编程实现提取文章中关键字的方法

    此方法使用了IKAnalyzer进行分词,并假设有一个`calculateTFIDF`方法用于计算TF-IDF值。 总之,Java中提取文章关键字涉及预处理、分词、关键词提取算法、去重统计等多个步骤,通过使用合适的工具和算法,可以有效地...

    智能分词tdif使用了TfIdfAlgorithm算法

    这一步可能需要用到成熟的分词工具,如结巴分词(Jieba)、HanLP或IK Analyzer等,它们能够有效地将连续的汉字序列切分成有意义的词语。 2. **构建词汇表**:将所有分词结果整理成词汇表,每个词对应一个唯一的ID,...

    Lucene+原理与代码分析完整版

    Analyzer可以根据语言特性进行定制,例如英语使用WhitespaceAnalyzer,中文则通常使用IKAnalyzer或SmartChineseAnalyzer。分词后的结果会被存储到一个倒排索引(Inverted Index)中,倒排索引是Lucene效率的关键,它...

    提取关键词(Java版)

    Java提供了多种分词工具,例如IK Analyzer、HanLP、jieba分词等,它们针对中文文本进行了优化,能有效地处理中文的词边界问题。 3. **构建词汇表**:统计每个文档中所有词汇的出现次数,形成词汇表,用于后续TF计算...

    搜索引擎 - 附源代码

    Java中,可以使用IK Analyzer、HanLP、jieba分词等开源库进行中文分词。选择合适的分词工具,能有效处理歧义和多词性的挑战。 ### 四、索引构建(Indexing) 索引是搜索引擎的核心,它允许快速查找包含特定词汇的...

    JAVA开源关键词提取框架

    Java中有多种分词库,如HanLP、IK Analyzer和jieba分词等,它们提供了中文和英文的分词功能。 3. **权重计算**:为每个单词分配一个权重,常用的算法有TF-IDF(词频-逆文档频率)和TextRank等。TF-IDF衡量了单词在...

    JNA.zip_JNA中文_java词性标注_关键词提取_关键词标注_分词

    TF-IDF计算词频和逆文档频率来评估词的重要性,TextRank则借鉴了图论中的PageRank算法,而LDA(Latent Dirichlet Allocation)是一种主题模型,可发现文本潜在的主题结构。 **关键词标注** 关键词标注是在文本中对...

    lucene全文检索教程

    对于中文,需要使用适当的分词器,如IK Analyzer或Smart Chinese Analyzer,以正确处理中文的词语边界问题。 最后,Lucene并非孤立存在,它可以与其他框架结合使用,例如Spring Data和Solr。Solr是基于Lucene的一个...

    基于java的文本搜索引擎的设计与实现源码.zip

    常用的Java库有Lucene、IK Analyzer等。 3. **索引构建模块**:建立倒排索引,将单词与文档之间的关系存储为键值对形式,便于快速查找。Lucene提供了强大的索引功能,支持多种数据结构和优化策略。 4. **查询处理...

Global site tag (gtag.js) - Google Analytics