代码
public SpecificOrdering generate(org.apache.spark.sql.catalyst.expressions.Expression[] expr) { return new SpecificOrdering(expr); } class SpecificOrdering extends org.apache.spark.sql.catalyst.expressions.codegen.BaseOrdering { private org.apache.spark.sql.catalyst.expressions.Expression[] expressions; public SpecificOrdering(org.apache.spark.sql.catalyst.expressions.Expression[] expr) { expressions = expr; } @Override public int compare(InternalRow a, InternalRow b) { InternalRow i = null; // Holds current row being evaluated. i = a; boolean isNullA2; UTF8String primitiveA3; { /* input[2, StringType] */ boolean isNull0 = i.isNullAt(2); UTF8String primitive1 = isNull0 ? null : (i.getUTF8String(2)); isNullA2 = isNull0; primitiveA3 = primitive1; } i = b; boolean isNullB4; UTF8String primitiveB5; { /* input[2, StringType] */ boolean isNull0 = i.isNullAt(2); UTF8String primitive1 = isNull0 ? null : (i.getUTF8String(2)); isNullB4 = isNull0; primitiveB5 = primitive1; } if (isNullA2 && isNullB4) { // Nothing } else if (isNullA2) { return -1; } else if (isNullB4) { return 1; } else { int comp = primitiveA3.compare(primitiveB5); if (comp != 0) { return comp; } } return 0; } }
相关推荐
在本项目中,ANTLR4被用来创建一个解析器,这个解析器支持多种SQL方言,包括Spark SQL、TiDB SQL以及Flink SQL,同时还支持Spark和Flink的运行命令解析。 Spark SQL是Apache Spark的一个组件,主要负责处理结构化的...
2. **解析器生成**:ANTLR4工具会根据Grammar文件生成Java代码,这些代码实现了词法分析和语法分析的功能。词法分析器(Lexer)将输入的SQL字符串分解成一个个的词法单元(Token),而语法分析器(Parser)则根据...
7. **Code Generation**:Spark SQL利用Tungsten项目实现了代码生成技术,将优化后的物理计划转换为高效的Java或Scala代码,进一步提升了执行效率。 8. **Datalog与Catalyst规则**:Catalyst优化器利用Datalog规则...
相比于之前的一些系统,Spark SQL提供了更加紧密的关系型与过程型处理之间的集成,通过声明式DataFrame API,可以和过程式的Spark代码无缝集成。这不仅使得Spark程序员能够利用关系型处理的优势,如声明式查询和优化...
此外,书中的案例研究和实战项目将帮助读者掌握Spark SQL在实际工作中的应用,比如大数据报表生成、实时数据分析等。 本书的章节可能涵盖以下主题: 1. Spark SQL基础:介绍Spark SQL的基本概念和环境设置。 2. ...
代码生成则是一种JIT编译技术,可以将Spark SQL生成的中间表示转换为高效执行的Java字节码。 文档还提到了Catalyst优化器,它是Spark SQL的查询优化引擎。Catalyst优化器使用一种领域特定语言(DSL),可以根据各种...
- **代码生成**:Spark SQL会将DataFrame操作转化为高效的执行计划,利用代码生成技术减少运行时的反射开销。 - **广播变量**:对于小表,可以使用广播join来减少网络传输,提高性能。 - **分区裁剪**:根据查询...
Spark SQL是Apache Spark的一个模块,它提供了对结构化数据的查询和处理能力。它允许用户使用SQL查询语言对分布式数据集进行查询和分析。Spark SQL不仅支持SQL标准,还支持 HiveQL,同时兼容Hive的表和UDF(用户定义...
提交后,Spark SQL会生成一个未完全解析的逻辑执行计划,接着利用内部的schema信息生成一个完整的逻辑执行计划。然后,该逻辑执行计划会被优化,最终生成一个优化后的逻辑执行计划。这个过程的核心是由Catalyst完成...
6. **性能优化**:Spark SQL采用了 Catalyst 编译器进行查询优化,包括代码生成、列式存储、过滤推导等,以提高查询性能。 7. **跨语言支持**:Spark SQL允许不同语言之间的交互,例如,Python用户可以创建...
Catalyst的Tungsten项目引入了基于IR(Intermediate Representation)的代码生成技术,可以生成高效的Java字节码,从而提高Spark SQL的执行性能。 8. **DataFrame操作**: DataFrame提供了丰富的操作接口,如...
二、Spark SQL 功能 Spark SQL 提供了多种功能,包括: * DataFrame:是一种分布式数据集,提供了详细的结构信息。DataFrame 可以从各种数据源生成,例如 JSON、Parquet 等。 * DataSet:是一种类型安全的 Dataset...
7. 执行优化:Spark SQL通过 Catalyst 编译器进行查询优化,包括列式存储、代码生成、动态分区裁剪等,以提高查询性能。 这个项目提供了完整的源码,对于学习如何使用Spark SQL进行大数据分析的开发者来说,这是一...
5. ** Catalyst优化器**:Spark SQL使用Catalyst作为其查询优化器,它可以自动进行各种查询优化,如代码生成、列裁剪、谓词下推等,提高查询性能。 6. **DataFrame的编程接口**:Spark SQL提供了Scala、Java、...
Spark-Sql 源码解析的主要流程包括语法分析、逻辑计划生成、物理计划生成和执行计划生成四个阶段。 在 Spark-Sql 源码解析中,SQL 语句首先被传递给 SqlParser,SqlParser 负责将 SQL 语句解析成抽象语法树(AST)...
本书由 11 章构成,从源码层面深入介绍 Spark SQL 内部实现机制,以及在实际业务场景中的开发实践,其中包括 SQL 编译实现、逻辑计划的生成与优化、物理计划的生成与优化、Aggregation 算子和 Join 算子的实现与执行...
以下将详细介绍Spark源代码的获取、环境配置、编译以及生成步骤。 1. **获取Spark源代码** Spark的源代码可以通过访问Apache官方网站或使用Git克隆仓库来获取。在终端中输入以下命令克隆Spark的GitHub仓库: ``...
Catalyst优化器负责转换和优化查询计划,Tungsten则通过自动生成Java字节码来提高执行效率,Code Generation能够将SQL查询转换为高效执行的本地代码。 三、离线分析流程 1. 数据加载:离线分析通常涉及从HDFS、Hive...
* Spark SQL 执行计划生成和优化都由 Catalyst(函数式关系查询优化框架)负责。 二、DataFrame 操作 * DataFrame 是一种以RDD为基础的分布式数据集,提供了详细的结构信息。 * DataFrame 支持多种数据源,包括 ...