`

java泛型

    博客分类:
  • java
 
阅读更多

来源:http://www.cnblogs.com/lwbqqyumidi/p/3837629.html

 

一. 泛型概念的提出(为什么需要泛型)?

首先,我们看下下面这段简短的代码:

public class GenericTest {
  
      public static void main(String[] args) {
         List list = new ArrayList();
          list.add("qqyumidi");
          list.add("corn");
         list.add(100);
 
         for (int i = 0; i < list.size(); i++) {
             String name = (String) list.get(i); // 1
             System.out.println("name:" + name);
        }
    }
 }

 

复制代码

定义了一个List类型的集合,先向其中加入了两个字符串类型的值,随后加入一个Integer类型的值。这是完全允许的,因为此时list默认的类型为Object类型。在之后的循环中,由于忘记了之前在list中也加入了Integer类型的值或其他编码原因,很容易出现类似于//1中的错误。因为编译阶段正常,而运行时会出现“java.lang.ClassCastException”异常。因此,导致此类错误编码过程中不易发现。

 在如上的编码过程中,我们发现主要存在两个问题:

1.当我们将一个对象放入集合中,集合不会记住此对象的类型,当再次从集合中取出此对象时,该对象的编译类型变成了Object类型,但其运行时类型任然为其本身类型。

2.因此,//1处取出集合元素时需要人为的强制类型转化到具体的目标类型,且很容易出现"java.lang.ClassCastException"异常。

那么有没有什么办法可以使集合能够记住集合内元素各类型,且能够达到只要编译时不出现问题,运行时就不会出现“java.lang.ClassCastException”异常呢?答案就是使用泛型。

 

二.什么是泛型?

泛型,即“参数化类型”。一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参。那么参数化类型怎么理解呢?顾名思义,就是将类型由原来的具体的类型参数化,类似于方法中的变量参数,此时类型也定义成参数形式(可以称之为类型形参),然后在使用/调用时传入具体的类型(类型实参)。

 看着好像有点复杂,首先我们看下上面那个例子采用泛型的写法。

 public class GenericTest {
 
     public static void main(String[] args) {
        /*
         List list = new ArrayList();
         list.add("qqyumidi");
         list.add("corn");
         list.add(100);
          */
 
         List<String> list = new ArrayList<String>();
         list.add("qqyumidi");
        list.add("corn");
         //list.add(100);   // 1  提示编译错误
 
         for (int i = 0; i < list.size(); i++) {
             String name = list.get(i); // 2
             System.out.println("name:" + name);
         }
     }
 }

 

复制代码
复制代码 

采用泛型写法后,在//1处想加入一个Integer类型的对象时会出现编译错误,通过List<String>,直接限定了list集合中只能含有String类型的元素,从而在//2处无须进行强制类型转换,因为此时,集合能够记住元素的类型信息,编译器已经能够确认它是String类型了。

结合上面的泛型定义,我们知道在List<String>中,String是类型实参,也就是说,相应的List接口中肯定含有类型形参。且get()方法的返回结果也直接是此形参类型(也就是对应的传入的类型实参)。下面就来看看List接口的的具体定义:

 public interface List<E> extends Collection<E> {
  
      int size();
 
     boolean isEmpty();
 
      boolean contains(Object o);
  
      Iterator<E> iterator();
 
     Object[] toArray();
 
     <T> T[] toArray(T[] a);
 
     boolean add(E e);
 
     boolean remove(Object o);
 
     boolean containsAll(Collection<?> c);
 
     boolean addAll(Collection<? extends E> c);
 
     boolean addAll(int index, Collection<? extends E> c);
 
     boolean removeAll(Collection<?> c);
 
     boolean retainAll(Collection<?> c);
 
     void clear();
 
     boolean equals(Object o);
 
     int hashCode();
 
     E get(int index);
 
     E set(int index, E element);
 
     void add(int index, E element);
 
     E remove(int index);
 
     int indexOf(Object o);
 
     int lastIndexOf(Object o);
 
     ListIterator<E> listIterator();
 
     ListIterator<E> listIterator(int index);
 
     List<E> subList(int fromIndex, int toIndex);
 }

 我们可以看到,在List接口中采用泛型化定义之后,<E>中的E表示类型形参,可以接收具体的类型实参,并且此接口定义中,凡是出现E的地方均表示相同的接受自外部的类型实参。

复制代码

自然的,ArrayList作为List接口的实现类,其定义形式是:

 public class ArrayList<E> extends AbstractList<E> 
          implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
      
      public boolean add(E e) {
          ensureCapacityInternal(size + 1);  // Increments modCount!!
          elementData[size++] = e;
          return true;
      }
      
     public E get(int index) {
         rangeCheck(index);
         checkForComodification();
         return ArrayList.this.elementData(offset + index);
     }
     
     //...省略掉其他具体的定义过程
 
 }

 

复制代码
复制代码

由此,我们从源代码角度明白了为什么//1处加入Integer类型对象编译错误,且//2处get()到的类型直接就是String类型了。

 

三.自定义泛型接口、泛型类和泛型方法

从上面的内容中,大家已经明白了泛型的具体运作过程。也知道了接口、类和方法也都可以使用泛型去定义,以及相应的使用。是的,在具体使用时,可以分为泛型接口、泛型类和泛型方法。

自定义泛型接口、泛型类和泛型方法与上述Java源码中的List、ArrayList类似。如下,我们看一个最简单的泛型类和方法定义:

 public class GenericTest {
  
      public static void main(String[] args) {
  
          Box<String> name = new Box<String>("corn");
          System.out.println("name:" + name.getData());
      }
  
  }
 
 class Box<T> {
 
     private T data;
 
     public Box() {
 
     }
 
     public Box(T data) {
         this.data = data;
     }
 
     public T getData() {
         return data;
     }
 
 } 

 

复制代码
复制代码

在泛型接口、泛型类和泛型方法的定义过程中,我们常见的如T、E、K、V等形式的参数常用于表示泛型形参,由于接收来自外部使用时候传入的类型实参。那么对于不同传入的类型实参,生成的相应对象实例的类型是不是一样的呢?

复制代码
  public class GenericTest {
  
      public static void main(String[] args) {
  
          Box<String> name = new Box<String>("corn");
         Box<Integer> age = new Box<Integer>(712);
  
          System.out.println("name class:" + name.getClass());      //com.qqyumidi.Box
          System.out.println("age class:" + age.getClass());        //com.qqyumidi.Box
         System.out.println(name.getClass() == age.getClass());    // true
 
     }
 
 }
 复制代码

由此,我们发现,在使用泛型类时,虽然传入了不同的泛型实参,但并没有真正意义上生成不同的类型,传入不同泛型实参的泛型类在内存上只有一个,即还是原来的最基本的类型(本实例中为Box),当然,在逻辑上我们可以理解成多个不同的泛型类型。

究其原因,在于Java中的泛型这一概念提出的目的,导致其只是作用于代码编译阶段,在编译过程中,对于正确检验泛型结果后,会将泛型的相关信息擦出,也就是说,成功编译过后的class文件中是不包含任何泛型信息的。泛型信息不会进入到运行时阶段。

对此总结成一句话:泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。

 

四.类型通配符

接着上面的结论,我们知道,Box<Number>和Box<Integer>实际上都是Box类型,现在需要继续探讨一个问题,那么在逻辑上,类似于Box<Number>和Box<Integer>是否可以看成具有父子关系的泛型类型呢?

为了弄清这个问题,我们继续看下下面这个例子:

public class GenericTest {
  
      public static void main(String[] args) {
  
          Box<Number> name = new Box<Number>(99);
          Box<Integer> age = new Box<Integer>(712);
  
          getData(name);
          
         //The method getData(Box<Number>) in the type GenericTest is 
         //not applicable for the arguments (Box<Integer>)
         getData(age);   // 1
 
     }
     
     public static void getData(Box<Number> data){
         System.out.println("data :" + data.getData());
     }
 
 }

 

复制代码
复制代码

我们发现,在代码//1处出现了错误提示信息:The method getData(Box<Number>) in the t ype GenericTest is not applicable for the arguments (Box<Integer>)。显然,通过提示信息,我们知道Box<Number>在逻辑上不能视为Box<Integer>的父类。那么,原因何在呢?

 public class GenericTest {
  
      public static void main(String[] args) {
  
          Box<Integer> a = new Box<Integer>(712);
          Box<Number> b = a;  // 1
          Box<Float> f = new Box<Float>(3.14f);
          b.setData(f);        // 2
  
     }
 
     public static void getData(Box<Number> data) {
         System.out.println("data :" + data.getData());
     }
 
 }
 
 class Box<T> {
 
     private T data;
 
     public Box() {
 
     }
 
     public Box(T data) {
         setData(data);
     }
 
     public T getData() {
         return data;
     }
 
     public void setData(T data) {
         this.data = data;
     }
 
 }

 

复制代码
复制代码

这个例子中,显然//1和//2处肯定会出现错误提示的。在此我们可以使用反证法来进行说明。

假设Box<Number>在逻辑上可以视为Box<Integer>的父类,那么//1和//2处将不会有错误提示了,那么问题就出来了,通过getData()方法取出数据时到底是什么类型呢?Integer? Float? 还是Number?且由于在编程过程中的顺序不可控性,导致在必要的时候必须要进行类型判断,且进行强制类型转换。显然,这与泛型的理念矛盾,因此,在逻辑上Box<Number>不能视为Box<Integer>的父类。

好,那我们回过头来继续看“类型通配符”中的第一个例子,我们知道其具体的错误提示的深层次原因了。那么如何解决呢?总部能再定义一个新的函数吧。这和Java中的多态理念显然是违背的,因此,我们需要一个在逻辑上可以用来表示同时是Box<Integer>和Box<Number>的父类的一个引用类型,由此,类型通配符应运而生。

类型通配符一般是使用 ? 代替具体的类型实参。注意了,此处是类型实参,而不是类型形参!且Box<?>在逻辑上是Box<Integer>、Box<Number>...等所有Box<具体类型实参>的父类。由此,我们依然可以定义泛型方法,来完成此类需求。

 public class GenericTest {
  
     public static void main(String[] args) {
  
          Box<String> name = new Box<String>("corn");
          Box<Integer> age = new Box<Integer>(712);
          Box<Number> number = new Box<Number>(314);
  
          getData(name);
         getData(age);
         getData(number);
     }
 
     public static void getData(Box<?> data) {
         System.out.println("data :" + data.getData());
     }
 
 }

 

复制代码
复制代码

有时候,我们还可能听到类型通配符上限和类型通配符下限。具体有是怎么样的呢?

在上面的例子中,如果需要定义一个功能类似于getData()的方法,但对类型实参又有进一步的限制:只能是Number类及其子类。此时,需要用到类型通配符上限。

复制代码
 public class GenericTest {
 
     public static void main(String[] args) {
 
         Box<String> name = new Box<String>("corn");
         Box<Integer> age = new Box<Integer>(712);
         Box<Number> number = new Box<Number>(314);
 
         getData(name);
         getData(age);
         getData(number);
         
         //getUpperNumberData(name); // 1
         getUpperNumberData(age);    // 2
         getUpperNumberData(number); // 3
     }
 
     public static void getData(Box<?> data) {
         System.out.println("data :" + data.getData());
     }
     
     public static void getUpperNumberData(Box<? extends Number> data){
         System.out.println("data :" + data.getData());
     }
 
 }

此时,显然,在代码//1处调用将出现错误提示,而//2 //3处调用正常。

类型通配符上限通过形如Box<? extends Number>形式定义,相对应的,类型通配符下限为Box<? super Number>形式,其含义与类型通配符上限正好相反,在此不作过多阐述了。

 

五.话外篇

本文中的例子主要是为了阐述泛型中的一些思想而简单举出的,并不一定有着实际的可用性。另外,一提到泛型,相信大家用到最多的就是在集合中,其实,在实际的编程过程中,自己可以使用泛型去简化开发,且能很好的保证代码质量。并且还要注意的一点是,Java中没有所谓的泛型数组一说。

对于泛型,最主要的还是需要理解其背后的思想和目的。

分享到:
评论

相关推荐

    Java泛型的用法及T.class的获取过程解析

    Java泛型的用法及T.class的获取过程解析 Java泛型是Java编程语言中的一种重要特性,它允许开发者在编写代码时指定类型参数,从而提高代码的灵活性和可读性。本文将详细介绍Java泛型的用法 及T.class的获取过程解析...

    Java泛型三篇文章,让你彻底理解泛型(super ,extend等区别)

    Java 泛型详解 Java 泛型是 Java SE 5.0 中引入的一项特征,它允许程序员在编译时检查类型安全,从而减少了 runtime 错误的可能性。泛型的主要优点是可以Reusable Code,让程序员编写更加灵活和可维护的代码。 ...

    Java泛型应用实例

    Java泛型是Java编程语言中的一个强大特性,它允许我们在定义类、接口和方法时指定类型参数,从而实现代码的重用和类型安全。在Java泛型应用实例中,我们可以看到泛型如何帮助我们提高代码的灵活性和效率,减少运行时...

    很好的Java泛型的总结

    Java泛型机制详解 Java泛型是Java语言中的一种机制,用于在编译期检查类型安全。Java泛型的出现解决了Java早期版本中类型安全检查的缺陷。Java泛型的好处是可以在编译期检查类型安全,避免了运行时的...

    java 泛型类的类型识别示例

    综上所述,虽然Java泛型在编译后会进行类型擦除,但通过上述技巧,我们仍然能够在运行时获得关于泛型类实例化类型的一些信息。在实际开发中,这些方法可以帮助我们编写更加灵活和安全的代码。在示例文件`GenericRTTI...

    java泛型技术之发展

    Java泛型是Java编程语言中的一个关键特性,它在2004年随着Java SE 5.0的发布而引入,极大地增强了代码的类型安全性和重用性。本篇文章将深入探讨Java泛型的发展历程、核心概念以及其在实际开发中的应用。 1. **发展...

    SUN公司Java泛型编程文档

    Java泛型是Java编程语言中的一个关键特性,它在2004年随着JDK 5.0的发布被引入。这个特性极大地提高了代码的类型安全性和可读性,减少了在运行时出现ClassCastException的可能性。SUN公司的Java泛型编程文档,包括...

    java 泛型接口示例

    下面我们将详细探讨Java泛型接口的相关知识点。 1. **泛型接口的定义** 泛型接口的定义方式与普通接口类似,只是在接口名之后添加了尖括号`&lt;T&gt;`,其中`T`是一个类型参数,代表某种未知的数据类型。例如: ```java...

    java 泛型方法使用示例

    下面我们将深入探讨Java泛型方法的概念、语法以及使用示例。 **一、泛型方法概念** 泛型方法是一种具有类型参数的方法,这些类型参数可以在方法声明时指定,并在方法体内部使用。与类的泛型类似,它们提供了编译时...

    java泛型的内部原理及更深应用

    Java泛型是Java编程语言中的一个强大特性,它允许在定义类、接口和方法时使用类型参数,从而实现参数化类型。这使得代码更加安全、可读性更强,并且能够减少类型转换的必要。在“java泛型的内部原理及更深应用”这个...

    JAVA泛型加减乘除

    这是一个使用JAVA实现的泛型编程,分为两部分,第一部分创建泛型类,并实例化泛型对象,得出相加结果。 第二部分用户自行输入0--4,选择要进行的加减乘除运算或退出,再输入要进行运算的两个数,并返回运算结果及...

    Java 泛型擦除后的三种补救方法

    Java 泛型是一种强大的工具,它允许我们在编程时指定变量的类型,提供了编译时的类型安全。然而,Java 的泛型在运行时是被擦除的,这意味着在运行时刻,所有的泛型类型信息都会丢失,无法直接用来创建对象或进行类型...

    java泛型学习ppt

    "Java 泛型学习" Java 泛型是 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类。泛型的主要目标是提高 Java 程序的类型安全。通过知道使用泛型定义的变量的类型限制,编译器可以在一个高得多的...

    Java泛型使用详细分析.pdf

    Java 泛型使用详细分析 Java 泛型是 Java 语言中的一种类型系统特性,允许开发者在编译期检查类型安全,以避免在运行时出现类型相关的错误。在本文中,我们将详细介绍 Java 泛型的使用方法和实现原理。 一、泛型的...

    Java泛型技术之发展.pdf

    Java泛型是Java编程语言中的一个关键特性,它在2004年随着Java SE 5.0的发布而引入,极大地增强了代码的类型安全性和重用性。本篇文章将深入探讨Java泛型的发展历程、核心概念以及其在实际开发中的应用。 1. **发展...

    面试必须资料java泛型攻略、

    #### 一、什么是Java泛型? Java泛型(Generics)是一种在编译时确保类型安全的机制,它允许程序员编写类型安全的通用类或方法,而无需进行显式的类型转换。在Java 1.5引入泛型之前,集合类(如`ArrayList`)只能...

Global site tag (gtag.js) - Google Analytics