`
jinnianshilongnian
  • 浏览: 21522224 次
  • 性别: Icon_minigender_1
博客专栏
5c8dac6a-21dc-3466-8abb-057664ab39c7
跟我学spring3
浏览量:2422020
D659df3e-4ad7-3b12-8b9a-1e94abd75ac3
Spring杂谈
浏览量:3011677
43989fe4-8b6b-3109-aaec-379d27dd4090
跟开涛学SpringMVC...
浏览量:5641445
1df97887-a9e1-3328-b6da-091f51f886a1
Servlet3.1规范翻...
浏览量:260474
4f347843-a078-36c1-977f-797c7fc123fc
springmvc杂谈
浏览量:1598449
22722232-95c1-34f2-b8e1-d059493d3d98
hibernate杂谈
浏览量:250504
45b32b6f-7468-3077-be40-00a5853c9a48
跟我学Shiro
浏览量:5862036
Group-logo
跟我学Nginx+Lua开...
浏览量:703367
5041f67a-12b2-30ba-814d-b55f466529d5
亿级流量网站架构核心技术
浏览量:786351
社区版块
存档分类
最新评论

构建需求响应式亿级商品详情页

 
阅读更多

该文章是根据velocity 2015技术大会的演讲《京东网站单品页618实战》细化而来,希望对大家有用。

 

商品详情页是什么

商品详情页是展示商品详细信息的一个页面,承载在网站的大部分流量和订单的入口。京东商城目前有通用版、全球购、闪购、易车、惠买车、服装、拼购、今日抄底等许多套模板。各套模板的元数据是一样的,只是展示方式不一样。目前商品详情页个性化需求非常多,数据来源也是非常多的,而且许多基础服务做不了的都放我们这,因此我们需要一种架构能快速响应和优雅的解决这些需求问题。因此我们重新设计了商品详情页的架构,主要包括三部分:商品详情页系统、商品详情页统一服务系统和商品详情页动态服务系统;商品详情页系统负责静的部分,而统一服务负责动的部分,而动态服务负责给内网其他系统提供一些数据服务。







    

商品详情页前端结构

前端展示可以分为这么几个维度:商品维度(标题、图片、属性等)、主商品维度(商品介绍、规格参数)、分类维度、商家维度、店铺维度等;另外还有一些实时性要求比较高的如实时价格、实时促销、广告词、配送至、预售等是通过异步加载。




京东商城还有一些特殊维度数据:比如套装、手机合约机等,这些数据是主商品数据外挂的。

 

我们的性能数据

618当天PV数亿,618当天服务器端响应时间<38ms。此处我们用的是第1000次中第99次排名的时间。   

单品页流量特点

离散数据,热点少,各种爬虫、比价软件抓取。

 

单品页技术架构发展


 

架构1.0


 IIS+C#+Sql Server,最原始的架构,直接调用商品库获取相应的数据,扛不住时加了一层memcached来缓存数据。这种方式经常受到依赖的服务不稳定而导致的性能抖动。

 

架构2.0

 


 
该方案使用了静态化技术,按照商品维度生成静态化HTML。主要思路:

1、通过MQ得到变更通知;

2、通过Java Worker调用多个依赖系统生成详情页HTML

3、通过rsync同步到其他机器;

4、通过Nginx直接输出静态页;

5、接入层负责负载均衡。

 

该方案的主要缺点:

1、假设只有分类、面包屑变更了,那么所有相关的商品都要重刷;

2、随着商品数量的增加,rsync会成为瓶颈;

3、无法迅速响应一些页面需求变更,大部分都是通过JavaScript动态改页面元素。

 

随着商品数量的增加这种架构的存储容量到达了瓶颈,而且按照商品维度生成整个页面会存在如分类维度变更就要全部刷一遍这个分类下所有信息的问题,因此我们又改造了一版按照尾号路由到多台机器。

 



 
主要思路:

1、容量问题通过按照商品尾号做路由分散到多台机器,按照自营商品单独一台,第三方商品按照尾号分散到11台;

2、按维度生成HTML片段(框架、商品介绍、规格参数、面包屑、相关分类、店铺信息),而不是一个大HTML

3、通过Nginx SSI合并片段输出;

4、接入层负责负载均衡;

5、多机房部署也无法通过rsync同步,而是使用部署多套相同的架构来实现。

 

该方案主要缺点:

1、碎片文件太多,导致如无法rsync

2、机械盘做SSI合并时,高并发时性能差,此时我们还没有尝试使用SSD

3、模板如果要变更,数亿商品需要数天才能刷完;

4、到达容量瓶颈时,我们会删除一部分静态化商品,然后通过动态渲染输出,动态渲染系统在高峰时会导致依赖系统压力大,抗不住;

5、还是无法迅速响应一些业务需求。

 

我们的痛点

1、之前架构的问题存在容量问题,很快就会出现无法全量静态化,还是需要动态渲染;不过对于全量静态化可以通过分布式文件系统解决该问题,这种方案没有尝试;

2、最主要的问题是随着业务的发展,无法满足迅速变化、还有一些变态的需求。

 

架构3.0

我们要解决的问题:

1、能迅速响瞬变的需求,和各种变态需求;

2、支持各种垂直化页面改版;

3、页面模块化;

4AB测试;

5、高性能、水平扩容;

6、多机房多活、异地多活。

 


主要思路:

1、数据变更还是通过MQ通知;

2、数据异构Worker得到通知,然后按照一些维度进行数据存储,存储到数据异构JIMDB集群(JIMDBRedis+持久化引擎),存储的数据都是未加工的原子化数据,如商品基本信息、商品扩展属性、商品其他一些相关信息、商品规格参数、分类、商家信息等;

3、数据异构Worker存储成功后,会发送一个MQ给数据同步Worker,数据同步Worker也可以叫做数据聚合Worker,按照相应的维度聚合数据存储到相应的JIMDB集群;三个维度:基本信息(基本信息+扩展属性等的一个聚合)、商品介绍(PC版、移动版)、其他信息(分类、商家等维度,数据量小,直接Redis存储);

4、前端展示分为两个:商品详情页和商品介绍,使用Nginx+Lua技术获取数据并渲染模板输出。

 

另外我们目前架构的目标不仅仅是为商品详情页提供数据,只要是Key-Value获取的而非关系的我们都可以提供服务,我们叫做动态服务系统。  


该动态服务分为前端和后端,即公网还是内网,如目前该动态服务为列表页、商品对比、微信单品页、总代等提供相应的数据来满足和支持其业务。

 

详情页架构设计原则

1、数据闭环

2、数据维度化

3、拆分系统

4Worker无状态化+任务化

5、异步化+并发化

6、多级缓存化

7、动态化

8、弹性化

9、降级开关

10、多机房多活

11、多种压测方案

 

 

数据闭环


 数据闭环即数据的自我管理,或者说是数据都在自己系统里维护,不依赖于任何其他系统,去依赖化;这样得到的好处就是别人抖动跟我没关系。

 

数据异构,是数据闭环的第一步,将各个依赖系统的数据拿过来,按照自己的要求存储起来;

 

数据原子化,数据异构的数据是原子化数据,这样未来我们可以对这些数据再加工再处理而响应变化的需求;

 

数据聚合,将多个原子数据聚合为一个大JSON数据,这样前端展示只需要一次get,当然要考虑系统架构,比如我们使用的Redis改造,Redis又是单线程系统,我们需要部署更多的Redis来支持更高的并发,另外存储的值要尽可能的小;

 

数据存储,我们使用JIMDBRedis加持久化存储引擎,可以存储超过内存N倍的数据量,我们目前一些系统是Redis+LMDB引擎的存储,目前是配合SSD进行存储;另外我们使用Hash Tag机制把相关的数据哈希到同一个分片,这样mget时不需要跨分片合并。

 

我们目前的异构数据时键值结构的,用于按照商品维度查询,还有一套异构时关系结构的用于关系查询使用。

 

详情页架构设计原则 / 数据维度化

对于数据应该按照维度和作用进行维度化,这样可以分离存储,进行更有效的存储和使用。我们数据的维度比较简单:

1、商品基本信息,标题、扩展属性、特殊属性、图片、颜色尺码、规格参数等;

2、商品介绍信息,商品维度商家模板、商品介绍等;

3、非商品维度其他信息,分类信息、商家信息、店铺信息、店铺头、品牌信息等;

4、商品维度其他信息(异步加载),价格、促销、配送至、广告词、推荐配件、最佳组合等。 

 

拆分系统



 将系统拆分为多个子系统虽然增加了复杂性,但是可以得到更多的好处,比如数据异构系统存储的数据是原子化数据,这样可以按照一些维度对外提供服务;而数据同步系统存储的是聚合数据,可以为前端展示提供高性能的读取。而前端展示系统分离为商品详情页和商品介绍,可以减少相互影响;目前商品介绍系统还提供其他的一些服务,比如全站异步页脚服务。

 

 

Worker无状态化+任务化 

1、数据异构和数据同步Worker无状态化设计,这样可以水平扩展;

2、应用虽然是无状态化的,但是配置文件还是有状态的,每个机房一套配置,这样每个机房只读取当前机房数据;

3、任务多队列化,等待队列、排重队列、本地执行队列、失败队列;

4、队列优先级化,分为:普通队列、刷数据队列、高优先级队列;例如一些秒杀商品会走高优先级队列保证快速执行;

5、副本队列,当上线后业务出现问题时,修正逻辑可以回放,从而修复数据;可以按照比如固定大小队列或者小时队列设计;

6、在设计消息时,按照维度更新,比如商品信息变更和商品上下架分离,减少每次变更接口的调用量,通过聚合Worker去做聚合。

 

异步化+并发化

 我们系统大量使用异步化,通过异步化机制提升并发能力。首先我们使用了消息异步化 进行系统解耦合,通过消息通知我变更,然后我再调用相应接口获取相关数据;之前老系统使用同步推送机制,这种方式系统是紧耦合的,出问题需要联系各个负责人重新推送还要考虑失败重试机制。数据更新异步化 ,更新缓存时,同步调用服务,然后异步更新缓存。可并行任务并发化, 商品数据系统来源有多处,但是可以并发调用聚合,这样本来串行需要1s的经过这种方式我们提升到300ms之内。异步请求合并,异步请求做合并,然后一次请求调用就能拿到所有数据。前端服务异步化/聚合,实时价格、实时库存异步化, 使用如线程或协程机制将多个可并发的服务聚合。异步化还一个好处就是可以对异步请求做合并,原来N次调用可以合并为一次,还可以做请求的排重。

 

多级缓存化

浏览器缓存,当页面之间来回跳转时走local cache,或者打开页面时拿着Last-ModifiedCDN验证是否过期,减少来回传输的数据量;

CDN缓存,用户去离自己最近的CDN节点拿数据,而不是都回源到北京机房获取数据,提升访问性能;

服务端应用本地缓存,我们使用Nginx+Lua架构,使用HttpLuaModule模块的shared dict做本地缓存( reload不丢失)或内存级Proxy Cache,从而减少带宽;

另外我们还使用使用一致性哈希(如商品编号/分类)做负载均衡内部对URL重写提升命中率;

我们对mget做了优化,如去商品其他维度数据,分类、面包屑、商家等差不多8个维度数据,如果每次mget获取性能差而且数据量很大,30KB以上;而这些数据缓存半小时也是没有问题的,因此我们设计为先读local cache,然后把不命中的再回源到remote cache获取,这个优化减少了一半以上的remote cache流量;

服务端分布式缓存,我们使用内存+SSD+JIMDB持久化存储。

 

动态化

数据获取动态化,商品详情页:按维度获取数据,商品基本数据、其他数据(分类、商家信息等);而且可以根据数据属性,按需做逻辑,比如虚拟商品需要自己定制的详情页,那么我们就可以跳转走,比如全球购的需要走jd.hk域名,那么也是没有问题的;

模板渲染实时化,支持随时变更模板需求;

重启应用秒级化,使用Nginx+Lua架构,重启速度快,重启不丢共享字典缓存数据;

需求上线速度化,因为我们使用了Nginx+Lua架构,可以快速上线和重启应用,不会产生抖动;另外Lua本身是一种脚本语言,我们也在尝试把代码如何版本化存储,直接内部驱动Lua代码更新上线而不需要重启Nginx

 

 

弹性化

我们所有应用业务都接入了Docker容器,存储还是物理机;我们会制作一些基础镜像,把需要的软件打成镜像,这样不用每次去运维那安装部署软件了;未来可以支持自动扩容,比如按照CPU或带宽自动扩容机器,目前京东一些业务支持一分钟自动扩容。

 

降级开关

推送服务器推送降级开关,开关集中化维护,然后通过推送机制推送到各个服务器;

可降级的多级读服务,前端数据集群--->数据异构集群--->动态服务(调用依赖系统);这样可以保证服务质量,假设前端数据集群坏了一个 磁盘,还可以回源到数据异构集群获取数据;

开关前置化,如Nginx--àTomcat,在Nginx上做开关,请求就到不了后端,减少后端压力;

可降级的业务线程池隔离,从Servlet3开始支持异步模型,Tomcat7/Jetty8开始支持,相同的概念是Jetty6Continuations。我们可以把处理过程分解为一个个的事件。通过这种将请求划分为事件方式我们可以进行更多的控制。如,我们可以为不同的业务再建立不同的线程池进行控制:即我们只依赖tomcat线程池进行请求的解析,对于请求的处理我们交给我们自己的线程池去完成;这样tomcat线程池就不是我们的瓶颈,造成现在无法优化的状况。通过使用这种异步化事件模型,我们可以提高整体的吞吐量,不让慢速的A业务处理影响到其他业务处理。慢的还是慢,但是不影响其他的业务。我们通过这种机制还可以把tomcat线程池的监控拿出来,出问题时可以直接清空业务线程池,另外还可以自定义任务队列来支持一些特殊的业务。


  

多机房多活

应用无状态,通过在配置文件中配置各自机房的数据集群来完成数据读取。


数据集群采用一主三从结构,防止当一个机房挂了,另一个机房压力大产生抖动。



多种压测方案

线下压测,Apache abApache Jmeter,这种方式是固定url压测,一般通过访问日志收集一些url进行压测,可以简单压测单机峰值吞吐量,但是不能作为最终的压测结果,因为这种压测会存在热点问题;

线上压测,可以使用Tcpcopy直接把线上流量导入到压测服务器,这种方式可以压测出机器的性能,而且可以把流量放大,也可以使用Nginx+Lua协程机制把流量分发到多台压测服务器,或者直接在页面埋点,让用户压测,此种压测方式可以不给用户返回内容。

 

遇到的一些坑和问题

 

SSD性能差

使用SSDKV存储时发现磁盘IO非常低。配置成RAID10的性能只有3~6MB/s;配置成RAID0的性能有~130MB/s,系统中没有发现CPUMEM,中断等瓶颈。一台服务器从RAID1改成RAID0后,性能只有~60MB/s。这说明我们用的SSD盘性能不稳定。

根据以上现象,初步怀疑以下几点:SSD盘,线上系统用的三星840Pro是消费级硬盘。RAID卡设置,Write backWrite through策略。后来测试验证,有影响,但不是关键。RAID卡类型,线上系统用的是LSI 2008,比较陈旧。



 

本实验使用dd顺序写操作简单测试,严格测试需要用FIO等工具。

 

 

键值存储选型压测

我们对于存储选型时尝试过LevelDBRocksDBBeansDBLMDBRiak等,最终根据我们的需求选择了LMDB

机器:2

配置:32CPU32GB内存、SSD(512GB)三星840Pro--> (600GB)Intel 3500 /Intel S3610

数据:1.7亿数据(800G数据)、大小5~30KB左右

KV存储引擎:LevelDBRocksDBLMDB,每台启动2个实例

压测工具:tcpcopy直接线上导流

压测用例:随机写+随机读

 

LevelDB压测时,随机读+随机写会产生抖动(我们的数据出自自己的监控平台,分钟级采样)。



RocksDB是改造自LevelDB,对SSD做了优化,我们压测时单独写或读,性能非常好,但是读写混合时就会因为归并产生抖动。  



 

LMDB引擎没有大的抖动,基本满足我们的需求。


 

我们目前一些线上服务器使用的是LMDB,其他一些正在尝试公司自主研发的CycleDB引擎。

 

 

数据量大时JIMDB同步不动

Jimdb数据同步时要dump数据,SSD盘容量用了50%以上,dump到同一块磁盘容量不足。解决方案:

1、一台物理机挂2SSD(512GB),单挂raid0;启动8jimdb实例;这样每实例差不多125GB左右;目前是挂4块,raid0;新机房计划8raid10

2、目前是千兆网卡同步,同步峰值在100MB/s左右;

3dumpsync数据时是顺序读写,因此挂一块SAS盘专门来同步数据;

4、使用文件锁保证一台物理机多个实例同时只有一个dump

5、后续计划改造为直接内存转发而不做dump

 

切换主从

之前存储架构是一主二从(主机房一主一从,备机房一从)切换到备机房时,只有一个主服务,读写压力大时有抖动,因此我们改造为之前架构图中的一主三从。

 

分片配置

 

之前的架构是分片逻辑分散到多个子系统的配置文件中,切换时需要操作很多系统;解决方案:

1、引入Twemproxy中间件,我们使用本地部署的Twemproxy来维护分片逻辑;

2、使用自动部署系统推送配置和重启应用,重启之前暂停mq消费保证数据一致性;

3、用unix domain socket减少连接数和端口占用不释放启动不了服务的问题。

 

 

模板元数据存储HTML

起初不确定Lua做逻辑和渲染模板性能如何,就尽量减少forif/else之类的逻辑;通过java worker组装html片段存储到jimdbhtml片段会存储诸多问题,假设未来变了也是需要全量刷出的,因此存储的内容最好就是元数据。因此通过线上不断压测,最终jimdb只存储元数据,lua做逻辑和渲染;逻辑代码在3000行以上;模板代码1500行以上,其中大量forif/else,目前渲染性能可以接受。

 

线上真实流量,整体性能从TP99 53ms降到32ms


绑定8 CPU测试的,渲染模板的性能可以接受。



 

 

库存接口访问量600w/分钟

商品详情页库存接口2014年被恶意刷,每分钟超过600w访问量,tomcat机器只能定时重启;因为是详情页展示的数据,缓存几秒钟是可以接受的,因此开启nginx proxy cache来解决该问题,开启后降到正常水平;我们目前正在使用Nginx+Lua架构改造服务,数据过滤、URL重写等在Nginx层完成,通过URL重写+一致性哈希负载均衡,不怕随机URL,一些服务提升了10%+的缓存命中率。

 

 

微信接口调用量暴增

通过访问日志发现某IP频繁抓取;而且按照商品编号遍历,但是会有一些不存在的编号;解决方案:

1、读取KV存储的部分不限流;

2、回源到服务接口的进行请求限流,保证服务质量。

 

开启Nginx Proxy Cache性能不升反降

 

开启Nginx Proxy Cache后,性能下降,而且过一段内存使用率到达98%;解决方案:

1、对于内存占用率高的问题是内核问题,内核使用LRU机制,本身不是问题,不过可以通过修改内核参数

sysctl -w vm.extra_free_kbytes=6436787

sysctl -w vm.vfs_cache_pressure=10000

2、使用Proxy Cache在机械盘上性能差可以通过tmpfs缓存或nginx共享字典缓存元数据,或者使用SSD,我们目前使用内存文件系统。

 

配送至读服务因依赖太多,响应时间偏慢

配送至服务每天有数十亿调用量,响应时间偏慢。解决方案:

1、串行获取变并发获取,这样一些服务可以并发调用,在我们某个系统中能提升一倍多的性能,从原来TP99差不多1s降到500ms以下;

2、预取依赖数据回传,这种机制还一个好处,比如我们依赖三个下游服务,而这三个服务都需要商品数据,那么我们可以在当前服务中取数据,然后回传给他们,这样可以减少下游系统的商品服务调用量,如果没有传,那么下游服务再自己查一下。

 

假设一个读服务是需要如下数据:

1、数据A  10ms

2、数据B  15ms

3、数据C   20ms

4、数据D   5ms

5、数据E   10ms

那么如果串行获取那么需要:60ms

而如果数据C依赖数据A和数据B、数据D谁也不依赖、数据E依赖数据C;那么我们可以这样子来获取数据:



那么如果并发化获取那么需要:30ms;能提升一倍的性能。

 

假设数据E还依赖数据F(5ms),而数据F是在数据E服务中获取的,此时就可以考虑在此服务中在取数据A/B/D时预取数据F,那么整体性能就变为了:25ms

 

通过这种优化我们服务提升了差不多10ms性能。



如下服务是在抖动时的性能,老服务TP99 211ms,新服务118ms,此处我们主要就是并发调用+超时时间限制,超时直接降级。



  

 

网络抖动时,返回502错误

Twemproxy配置的timeout时间太长,之前设置为5s,而且没有分别针对连接、读、写设置超时。后来我们减少超时时间,内网设置在150ms以内,当超时时访问动态服务。

 

机器流量太大

2014年双11期间,服务器网卡流量到了400MbpsCPU 30%左右。原因是我们所有压缩都在接入层完成,因此接入层不再传入相关请求头到应用,随着流量的增大,接入层压力过大,因此我们把压缩下方到各个业务应用,添加了相应的请求头,Nginx GZIP压缩级别在2~4吞吐量最高;应用服务器流量降了差不多5倍;目前正常情况CPU4%以下。



 

总结

数据闭环

数据维度化

拆分系统

Worker无状态化+任务化

异步化+并发化

多级缓存化

动态化

弹性化

降级开关

多机房多活

多种压测方案

Nginx接入层线上灰度引流

接入层转发时只保留有用请求头

使用不需要cookie的无状态域名(如c.3.cn),减少入口带宽

Nginx Proxy Cache只缓存有效数据,如托底数据不缓存

使用非阻塞锁应对local cache失效时突发请求到后端应用(lua-resty-lock/proxy_cache_lock)

使用Twemproxy减少Redis连接数

使用unix domain socket套接字减少本机TCP连接数

设置合理的超时时间(连接、读、写)

使用长连接减少内部服务的连接数

去数据库依赖(协调部门迁移数据库是很痛苦的,目前内部使用机房域名而不是ip),服务化

客户端同域连接限制,进行域名分区:c0.3.cn  c1.3.cn,如果未来支持HTTP/2.0的话,就不再适用了。

     

  • 大小: 185.8 KB
  • 大小: 155.2 KB
  • 大小: 233.3 KB
  • 大小: 148.5 KB
  • 大小: 163.2 KB
  • 大小: 46 KB
  • 大小: 50.2 KB
  • 大小: 29.9 KB
  • 大小: 29.9 KB
  • 大小: 33.9 KB
  • 大小: 46.3 KB
  • 大小: 58.6 KB
  • 大小: 54.5 KB
  • 大小: 65.8 KB
  • 大小: 51.7 KB
  • 大小: 45.7 KB
  • 大小: 50.3 KB
  • 大小: 82.4 KB
  • 大小: 76.1 KB
  • 大小: 52.1 KB
  • 大小: 129.1 KB
  • 大小: 137.9 KB
  • 大小: 91 KB
  • 大小: 52.2 KB
  • 大小: 42.3 KB
  • 大小: 5.2 KB
  • 大小: 68.5 KB
  • 大小: 38.2 KB
  • 大小: 43 KB
37
1
分享到:
评论
30 楼 gb4215287 2017-07-27  
这个nginx+lua的响应速度比纯静态页还快吗?
29 楼 suke04 2017-06-16  
在MQ跟系统异构那一块有同感。2011的时候负责的一个项目系统性能因为需求变化而不能达到要求。当时因为系统收到一个JMS后要从其他多个系统Pull其他数据生成PDF文件。太多依靠其他系统了。在PUSH和PULL上面整整吵了大半年(政府部门就是这样),后来还是采用了基本类似的框架。当然,前端不能和京东的相对比,因为我们的流量要少的多,高容量并发要求不是那么高,但是因为商业模式的复杂性,安全性,系统集成度要比京东系统复杂的多。

不过真的写的不错,读起来比较享受。有空多多交流交流。
28 楼 wangjunfu 2017-02-14  
实时价格、实时库存异步化,这些都异步化如何保证库存、价格数据是实时的?
27 楼 z381514112 2016-12-29  
yingyingbolen 写道
数据异构那步,跟业务拆分的模块挂钩吗?即是把业务需要的数据取过来保存的吗?每个业务数据需要有业务标识吗?
还是说就是原始的表数据,几乎就是原应用数据库数据的copy?
请大神指点一二。  

  
26 楼 yingyingbolen 2016-10-28  
jinnianshilongnian 写道
yingyingbolen 写道
jinnianshilongnian 写道
yingyingbolen 写道
数据异构那步,跟业务拆分的模块挂钩吗?即是把业务需要的数据取过来保存的吗?每个业务数据需要有业务标识吗?
还是说就是原始的表数据,几乎就是原应用数据库数据的copy?
请大神指点一二。  

是的 复制了一份

谢谢!如果数据异构完全是数据的copy,那数据同步的那一步,mq传什么参数能找到相应的模块进行更新呢?还有这两部分key的定义策略是什么?数据异构我用的表名+数据id,这样做数据异构时候用表名判断是哪个业务需要更新,但是对于删除的数据根据Id已经找不到了。。。大神再指点我一下吧。超级感谢!

数据都给你了 规则你自己定即可;

好吧,我好好想想。谢谢你。
25 楼 jinnianshilongnian 2016-10-27  
yingyingbolen 写道
jinnianshilongnian 写道
yingyingbolen 写道
数据异构那步,跟业务拆分的模块挂钩吗?即是把业务需要的数据取过来保存的吗?每个业务数据需要有业务标识吗?
还是说就是原始的表数据,几乎就是原应用数据库数据的copy?
请大神指点一二。  

是的 复制了一份

谢谢!如果数据异构完全是数据的copy,那数据同步的那一步,mq传什么参数能找到相应的模块进行更新呢?还有这两部分key的定义策略是什么?数据异构我用的表名+数据id,这样做数据异构时候用表名判断是哪个业务需要更新,但是对于删除的数据根据Id已经找不到了。。。大神再指点我一下吧。超级感谢!

数据都给你了 规则你自己定即可;
24 楼 yingyingbolen 2016-10-27  
jinnianshilongnian 写道
yingyingbolen 写道
数据异构那步,跟业务拆分的模块挂钩吗?即是把业务需要的数据取过来保存的吗?每个业务数据需要有业务标识吗?
还是说就是原始的表数据,几乎就是原应用数据库数据的copy?
请大神指点一二。  

是的 复制了一份

谢谢!如果数据异构完全是数据的copy,那数据同步的那一步,mq传什么参数能找到相应的模块进行更新呢?还有这两部分key的定义策略是什么?数据异构我用的表名+数据id,这样做数据异构时候用表名判断是哪个业务需要更新,但是对于删除的数据根据Id已经找不到了。。。大神再指点我一下吧。超级感谢!
23 楼 jinnianshilongnian 2016-10-27  
yingyingbolen 写道
数据异构那步,跟业务拆分的模块挂钩吗?即是把业务需要的数据取过来保存的吗?每个业务数据需要有业务标识吗?
还是说就是原始的表数据,几乎就是原应用数据库数据的copy?
请大神指点一二。  

是的 复制了一份
22 楼 yingyingbolen 2016-10-27  
数据异构那步,跟业务拆分的模块挂钩吗?即是把业务需要的数据取过来保存的吗?每个业务数据需要有业务标识吗?
还是说就是原始的表数据,几乎就是原应用数据库数据的copy?
请大神指点一二。  
21 楼 cabing2005 2016-08-08  
赞。 挺好的。
20 楼 pangpang514 2016-08-01  
很不错的分享。
希望对我们做app后端接口的也能有所帮助! 
19 楼 masuweng 2016-07-20  
很难看懂
18 楼 donghustone 2016-03-15  
很详细,学习了。
17 楼 truesmile 2015-12-30  
另外请教一下,全面接入弹性云是什么意思?或者说,弹性云是什么东东?谢谢!
16 楼 truesmile 2015-12-30  
大赞,难得的大流量实践。
15 楼 liujze 2015-11-15  
14 楼 zrzking 2015-11-07  
商品详情页分析很清楚,商品搜索架构可以分享一下吗?
13 楼 kunlyy 2015-09-19  
太牛逼啊,各种膜拜。。然后。。。各种不懂啊
12 楼 Mrchaixs 2015-09-10  
大赞!
11 楼 yjflfliulei 2015-09-10  
在北京velocity,一眼就看到了坐在第一排角落的你

相关推荐

    开涛高可用高并发-亿级流量核心技术

    16 构建需求响应式亿级商品详情页 324 16.1 商品详情页是什么 324 16.2 商品详情页前端结构 325 16.3 我们的性能数据 327 16.4 单品页流量特点 327 16.5 单品页技术架构发展 327 16.5.1 架构1.0 328 16.5.2 架构2.0 ...

    仿京东天猫商品详情页

    8. **响应式设计**:考虑到不同设备的屏幕尺寸,应确保页面在不同分辨率和方向下的适配,可以使用比例布局或`PercentFrameLayout`来实现。 通过以上步骤,我们可以逐步构建出一个功能完备、用户体验良好的商品...

    Android-仿京东天猫app的商品详情页的布局架构以及功能实现

    在Android开发中,构建一个类似京东或天猫应用的商品详情页是一项复杂的任务,涉及到多个组件、交互设计和技术实现。本文将详细解析商品详情页的布局架构和功能实现。 首先,我们来了解一下布局架构。商品详情页...

    php商城单个商品详情页购买页单品购买源码.rar

    3. **用户体验**:页面布局清晰,交互友好,响应式设计适应不同设备。 4. **错误处理**:良好的错误提示和处理机制,帮助用户和开发者定位问题。 通过深入研究和理解这个源码,开发者不仅可以快速搭建功能完善的...

    电商小程序商品详情页样式源码.zip

    4. **响应式设计**:由于小程序需要适配不同尺寸的手机屏幕,因此需要采用响应式布局,确保在各种设备上都能正常显示。 5. **交互设计**:商品详情页的交互设计十分重要,如点击放大查看商品图、滑动查看多张图片、...

    仿淘宝京东商品详情页翻页

    6. **响应式设计**:考虑到不同设备的屏幕尺寸和方向,商品详情页应具有良好的响应式布局,能够自动适应横竖屏和不同分辨率的设备。 7. **性能优化**:由于商品详情页通常包含大量的图片和信息,优化加载速度和内存...

    仿淘宝商品详情页(上拉阻尼效果以及第二页View Page滑动)

    考虑到不同设备和浏览器的兼容性,需要进行响应式设计和跨平台测试,确保在各种屏幕尺寸和操作系统上都能正常工作。 6. **用户体验**: - **反馈机制**:添加适当的触感反馈,如点击和滑动时的震动或声音,增强...

    综合在线购物电商响应式网页模板_html5 bootstrap 响应式模板UI前端源码.rar

    模板通常包括首页、商品分类页、商品详情页、购物车、结账流程等电商网站常见页面,开发者只需根据实际需求进行定制和修改,即可快速构建出专业且美观的电商网站。 总的来说,利用HTML5、Bootstrap和响应式设计,...

    类似于淘宝商品详情页的图片放大效果组件

    总的来说,创建一个类似于淘宝商品详情页的图片放大效果组件涉及到Vue3的多个核心概念和技术,包括Composition API、响应式系统、事件处理和动画效果。通过熟练掌握这些知识点,开发者可以为用户提供更加丰富的交互...

    metronic bootstrap 扁平化响应式模板

    2. **电子商务**:在电子商务领域,Metronic 可以快速构建购物车、商品详情页、用户中心等关键页面,提升网站的交互性和转化率。 3. **后台管理界面**:Metronic 的强大功能和美观设计也适用于后台管理系统,为管理...

    Android仿淘宝商品详情页效果

    7. **响应式布局**:考虑到不同设备的屏幕尺寸,使用相对布局或约束布局来实现响应式设计,确保在各种设备上都能良好展示。 8. **性能优化**:避免内存泄漏,合理使用内存,减少不必要的计算和绘制,确保应用流畅...

    时尚鞋包品牌商城网页模板_html5 bootstrap 响应式模板UI前端源码.rar

    在鞋包商城模板中,响应式设计使得商品详情页、购物车、导航栏等元素都能自适应屏幕变化,保证用户无论在大屏电脑还是小屏手机上都能轻松操作。 压缩包中的文件名为“html”,暗示了源码主要由HTML文件组成,可能还...

    bootstrap响应式商城模板ui框架设计

    Bootstrap是Twitter推出的一个开源工具包,它包含了丰富的样式组件、响应式网格系统以及JavaScript插件,使得构建响应式和移动优先的网页变得更加便捷。 在Forge电商模板中,"index.html"通常是首页,展示商品、...

    css.rar_css框架_单页网站_响应式_响应式网站_响应式网站框架

    CSS框架在实现响应式设计中扮演着重要角色,为开发者提供了便捷的工具和预定义的样式,大大简化了构建响应式网站的过程。在这个“css.rar”压缩包中,包含了创建响应式单页网站所需的各种资源,如HTML文件、CSS样式...

    Bootstrap响应式商城网站模板

    Bootstrap响应式商城网站模板是基于流行的前端开发框架Bootstrap构建的一款电子商务网站模板,它设计精美,功能全面,且具有良好的响应式布局,能够适应各种屏幕尺寸的设备,包括桌面、平板和手机。这款模板旨在为...

    响应式页面11页 可二次开发 可做期末作业或毕设

    响应式页面设计是一种现代网页开发技术,旨在提供跨设备、跨屏幕尺寸的无缝用户体验。它通过灵活的布局、媒体查询和动态图像调整来确保网页在手机、平板电脑和桌面电脑等不同设备上都能正常显示。在这个名为“响应式...

    bootcss响应式电影网模板

    【描述】:BootCSS响应式电影网模板是一种基于Bootstrap框架设计的网页模板,特别适用于构建具有现代化视觉效果和流畅用户体验的电影类网站。Bootstrap是一款流行的前端开发框架,它提供了丰富的预定义样式、组件和...

    电商移动端页面模板(基于html5+css,包括主页,商品详情,转账,付款,购物车等页面)

    在本项目中,CSS可能运用了响应式设计,确保页面在不同设备和屏幕尺寸下都能正常显示。CSS3新增了许多特性,如媒体查询(media queries)、Flexbox(弹性盒模型)和Grid布局,这些都极大地提升了页面的布局灵活性。...

    html5响应式杂志模板

    这种模板通常利用媒体查询(Media Queries)和其他响应式设计技术,确保页面在各种屏幕尺寸下都能保持良好的可读性和导航性。 HTML5是超文本标记语言的第五个版本,它引入了许多新的元素、属性和API,旨在提高网页...

Global site tag (gtag.js) - Google Analytics