接下来我们分析DH加密算法,一种适基于密钥一致协议的加密算法。
DH
Diffie-Hellman算法(D-H算法),密钥一致协议。是由公开密钥密码体制的奠基人Diffie和Hellman所提出的一种思想。简单的说就是允许两名用户在公开媒体上交换信息以生成"一致"的、可以共享的密钥。换句话说,就是由甲方产出一对密钥(公钥、私钥),乙方依照甲方公钥产生乙方密钥对(公钥、私钥)。以此为基线,作为数据传输保密基础,同时双方使用同一种对称加密算法构建本地密钥(SecretKey)对数据加密。这样,在互通了本地密钥(SecretKey)算法后,甲乙双方公开自己的公钥,使用对方的公钥和刚才产生的私钥加密数据,同时可以使用对方的公钥和自己的私钥对数据解密。不单单是甲乙双方两方,可以扩展为多方共享数据通讯,这样就完成了网络交互数据的安全通讯!该算法源于中国的同余定理——中国馀数定理。
流程分析:
1.甲方构建密钥对儿,将公钥公布给乙方,将私钥保留;双方约定数据加密算法;乙方通过甲方公钥构建密钥对儿,将公钥公布给甲方,将私钥保留。
2.甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给乙方加密后的数据;乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。
3.乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给甲方加密后的数据;甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。

通过java代码实现如下:Coder类见 Java加密技术(一)
再给出一个测试类:
控制台输出:
如我所言,甲乙双方在获得对方公钥后可以对发送给对方的数据加密,同时也能对接收到的数据解密,达到了数据安全通信的目的!
DH
Diffie-Hellman算法(D-H算法),密钥一致协议。是由公开密钥密码体制的奠基人Diffie和Hellman所提出的一种思想。简单的说就是允许两名用户在公开媒体上交换信息以生成"一致"的、可以共享的密钥。换句话说,就是由甲方产出一对密钥(公钥、私钥),乙方依照甲方公钥产生乙方密钥对(公钥、私钥)。以此为基线,作为数据传输保密基础,同时双方使用同一种对称加密算法构建本地密钥(SecretKey)对数据加密。这样,在互通了本地密钥(SecretKey)算法后,甲乙双方公开自己的公钥,使用对方的公钥和刚才产生的私钥加密数据,同时可以使用对方的公钥和自己的私钥对数据解密。不单单是甲乙双方两方,可以扩展为多方共享数据通讯,这样就完成了网络交互数据的安全通讯!该算法源于中国的同余定理——中国馀数定理。

流程分析:
1.甲方构建密钥对儿,将公钥公布给乙方,将私钥保留;双方约定数据加密算法;乙方通过甲方公钥构建密钥对儿,将公钥公布给甲方,将私钥保留。
2.甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给乙方加密后的数据;乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。
3.乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给甲方加密后的数据;甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。

通过java代码实现如下:Coder类见 Java加密技术(一)
- import java.security.Key;
- import java.security.KeyFactory;
- import java.security.KeyPair;
- import java.security.KeyPairGenerator;
- import java.security.PublicKey;
- import java.security.spec.PKCS8EncodedKeySpec;
- import java.security.spec.X509EncodedKeySpec;
- import java.util.HashMap;
- import java.util.Map;
- import javax.crypto.Cipher;
- import javax.crypto.KeyAgreement;
- import javax.crypto.SecretKey;
- import javax.crypto.interfaces.DHPrivateKey;
- import javax.crypto.interfaces.DHPublicKey;
- import javax.crypto.spec.DHParameterSpec;
- /**
- * DH安全编码组件
- *
- * @author 梁栋
- * @version 1.0
- * @since 1.0
- */
- public abstract class DHCoder extends Coder {
- public static final String ALGORITHM = "DH";
- /**
- * 默认密钥字节数
- *
- * <pre>
- * DH
- * Default Keysize 1024
- * Keysize must be a multiple of 64, ranging from 512 to 1024 (inclusive).
- * </pre>
- */
- private static final int KEY_SIZE = 1024;
- /**
- * DH加密下需要一种对称加密算法对数据加密,这里我们使用DES,也可以使用其他对称加密算法。
- */
- public static final String SECRET_ALGORITHM = "DES";
- private static final String PUBLIC_KEY = "DHPublicKey";
- private static final String PRIVATE_KEY = "DHPrivateKey";
- /**
- * 初始化甲方密钥
- *
- * @return
- * @throws Exception
- */
- public static Map<String, Object> initKey() throws Exception {
- KeyPairGenerator keyPairGenerator = KeyPairGenerator
- .getInstance(ALGORITHM);
- keyPairGenerator.initialize(KEY_SIZE);
- KeyPair keyPair = keyPairGenerator.generateKeyPair();
- // 甲方公钥
- DHPublicKey publicKey = (DHPublicKey) keyPair.getPublic();
- // 甲方私钥
- DHPrivateKey privateKey = (DHPrivateKey) keyPair.getPrivate();
- Map<String, Object> keyMap = new HashMap<String, Object>(2);
- keyMap.put(PUBLIC_KEY, publicKey);
- keyMap.put(PRIVATE_KEY, privateKey);
- return keyMap;
- }
- /**
- * 初始化乙方密钥
- *
- * @param key
- * 甲方公钥
- * @return
- * @throws Exception
- */
- public static Map<String, Object> initKey(String key) throws Exception {
- // 解析甲方公钥
- byte[] keyBytes = decryptBASE64(key);
- X509EncodedKeySpec x509KeySpec = new X509EncodedKeySpec(keyBytes);
- KeyFactory keyFactory = KeyFactory.getInstance(ALGORITHM);
- PublicKey pubKey = keyFactory.generatePublic(x509KeySpec);
- // 由甲方公钥构建乙方密钥
- DHParameterSpec dhParamSpec = ((DHPublicKey) pubKey).getParams();
- KeyPairGenerator keyPairGenerator = KeyPairGenerator
- .getInstance(keyFactory.getAlgorithm());
- keyPairGenerator.initialize(dhParamSpec);
- KeyPair keyPair = keyPairGenerator.generateKeyPair();
- // 乙方公钥
- DHPublicKey publicKey = (DHPublicKey) keyPair.getPublic();
- // 乙方私钥
- DHPrivateKey privateKey = (DHPrivateKey) keyPair.getPrivate();
- Map<String, Object> keyMap = new HashMap<String, Object>(2);
- keyMap.put(PUBLIC_KEY, publicKey);
- keyMap.put(PRIVATE_KEY, privateKey);
- return keyMap;
- }
- /**
- * 加密<br>
- *
- * @param data
- * 待加密数据
- * @param publicKey
- * 甲方公钥
- * @param privateKey
- * 乙方私钥
- * @return
- * @throws Exception
- */
- public static byte[] encrypt(byte[] data, String publicKey,
- String privateKey) throws Exception {
- // 生成本地密钥
- SecretKey secretKey = getSecretKey(publicKey, privateKey);
- // 数据加密
- Cipher cipher = Cipher.getInstance(secretKey.getAlgorithm());
- cipher.init(Cipher.ENCRYPT_MODE, secretKey);
- return cipher.doFinal(data);
- }
- /**
- * 解密<br>
- *
- * @param data
- * 待解密数据
- * @param publicKey
- * 乙方公钥
- * @param privateKey
- * 乙方私钥
- * @return
- * @throws Exception
- */
- public static byte[] decrypt(byte[] data, String publicKey,
- String privateKey) throws Exception {
- // 生成本地密钥
- SecretKey secretKey = getSecretKey(publicKey, privateKey);
- // 数据解密
- Cipher cipher = Cipher.getInstance(secretKey.getAlgorithm());
- cipher.init(Cipher.DECRYPT_MODE, secretKey);
- return cipher.doFinal(data);
- }
- /**
- * 构建密钥
- *
- * @param publicKey
- * 公钥
- * @param privateKey
- * 私钥
- * @return
- * @throws Exception
- */
- private static SecretKey getSecretKey(String publicKey, String privateKey)
- throws Exception {
- // 初始化公钥
- byte[] pubKeyBytes = decryptBASE64(publicKey);
- KeyFactory keyFactory = KeyFactory.getInstance(ALGORITHM);
- X509EncodedKeySpec x509KeySpec = new X509EncodedKeySpec(pubKeyBytes);
- PublicKey pubKey = keyFactory.generatePublic(x509KeySpec);
- // 初始化私钥
- byte[] priKeyBytes = decryptBASE64(privateKey);
- PKCS8EncodedKeySpec pkcs8KeySpec = new PKCS8EncodedKeySpec(priKeyBytes);
- Key priKey = keyFactory.generatePrivate(pkcs8KeySpec);
- KeyAgreement keyAgree = KeyAgreement.getInstance(keyFactory
- .getAlgorithm());
- keyAgree.init(priKey);
- keyAgree.doPhase(pubKey, true);
- // 生成本地密钥
- SecretKey secretKey = keyAgree.generateSecret(SECRET_ALGORITHM);
- return secretKey;
- }
- /**
- * 取得私钥
- *
- * @param keyMap
- * @return
- * @throws Exception
- */
- public static String getPrivateKey(Map<String, Object> keyMap)
- throws Exception {
- Key key = (Key) keyMap.get(PRIVATE_KEY);
- return encryptBASE64(key.getEncoded());
- }
- /**
- * 取得公钥
- *
- * @param keyMap
- * @return
- * @throws Exception
- */
- public static String getPublicKey(Map<String, Object> keyMap)
- throws Exception {
- Key key = (Key) keyMap.get(PUBLIC_KEY);
- return encryptBASE64(key.getEncoded());
- }
- }
再给出一个测试类:
- import static org.junit.Assert.*;
- import java.util.Map;
- import org.junit.Test;
- /**
- *
- * @author 梁栋
- * @version 1.0
- * @since 1.0
- */
- public class DHCoderTest {
- @Test
- public void test() throws Exception {
- // 生成甲方密钥对儿
- Map<String, Object> aKeyMap = DHCoder.initKey();
- String aPublicKey = DHCoder.getPublicKey(aKeyMap);
- String aPrivateKey = DHCoder.getPrivateKey(aKeyMap);
- System.err.println("甲方公钥:\r" + aPublicKey);
- System.err.println("甲方私钥:\r" + aPrivateKey);
- // 由甲方公钥产生本地密钥对儿
- Map<String, Object> bKeyMap = DHCoder.initKey(aPublicKey);
- String bPublicKey = DHCoder.getPublicKey(bKeyMap);
- String bPrivateKey = DHCoder.getPrivateKey(bKeyMap);
- System.err.println("乙方公钥:\r" + bPublicKey);
- System.err.println("乙方私钥:\r" + bPrivateKey);
- String aInput = "abc ";
- System.err.println("原文: " + aInput);
- // 由甲方公钥,乙方私钥构建密文
- byte[] aCode = DHCoder.encrypt(aInput.getBytes(), aPublicKey,
- bPrivateKey);
- // 由乙方公钥,甲方私钥解密
- byte[] aDecode = DHCoder.decrypt(aCode, bPublicKey, aPrivateKey);
- String aOutput = (new String(aDecode));
- System.err.println("解密: " + aOutput);
- assertEquals(aInput, aOutput);
- System.err.println(" ===============反过来加密解密================== ");
- String bInput = "def ";
- System.err.println("原文: " + bInput);
- // 由乙方公钥,甲方私钥构建密文
- byte[] bCode = DHCoder.encrypt(bInput.getBytes(), bPublicKey,
- aPrivateKey);
- // 由甲方公钥,乙方私钥解密
- byte[] bDecode = DHCoder.decrypt(bCode, aPublicKey, bPrivateKey);
- String bOutput = (new String(bDecode));
- System.err.println("解密: " + bOutput);
- assertEquals(bInput, bOutput);
- }
- }
控制台输出:
- 甲方公钥:
- MIHfMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYXrgHz
- W5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpDTWSG
- kx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgANDAAJAdAWBVmIzqcko
- Ej6qFjLDL2+Y3FPq1iRbnOyOpDj71yKaK1K+FhTv04B0zy4DKcvAASV7/Gv0W+bgqdmffRkqrQ==
- 甲方私钥:
- MIHRAgEAMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYX
- rgHzW5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpD
- TWSGkx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgAQyAjACJRfy1LyR
- eHyD+4Hfb+xR0uoIGR1oL9i9Nk6g2AAuaDPgEVWHn+QXID13yL/uDos=
- 乙方公钥:
- MIHfMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYXrgHz
- W5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpDTWSG
- kx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgANDAAJAVEYSfBA+I9nr
- dWw3OBv475C+eBrWBBYqt0m6/eu4ptuDQHwV4MmUtKAC2wc2nNrdb1wmBhY1X8RnWkJ1XmdDbQ==
- 乙方私钥:
- MIHSAgEAMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYX
- rgHzW5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpD
- TWSGkx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgAQzAjEAqaZiCdXp
- 2iNpdBlHRaO9ir70wo2n32xNlIzIX19VLSPCDdeUWkgRv4CEj/8k+/yd
- 原文: abc
- 解密: abc
- ===============反过来加密解密==================
- 原文: def
- 解密: def
如我所言,甲乙双方在获得对方公钥后可以对发送给对方的数据加密,同时也能对接收到的数据解密,达到了数据安全通信的目的!

相关推荐
接下来,非对称加密算法,如DH(Diffie-Hellman)和RSA,它们使用一对公钥和私钥。DH算法主要用于密钥交换,两方通过公开信息协商出一个共享密钥,而RSA则可用于加密和数字签名,私钥用于解密和签名,公钥用于加密和...
DH算法的核心在于两个非对称的数学实体——公钥和私钥。在通信开始时,双方各自生成一对密钥,其中私钥保密,公钥公开。然后,双方通过网络交换公钥,利用公钥计算出一个共享的秘密值,这个秘密值可以作为会话密钥...
RSA是一种广泛应用的非对称加密算法,它的核心在于一对密钥——公钥和私钥。公钥可以公开给任何人,用于加密数据;而私钥必须保密,用于解密由公钥加密的数据。这种特性使得RSA在网络安全通信中具有重要的作用,例如...
li_3ck_02a_1118
基于MATLAB的牛顿迭代法实现
mellitz_3ck_01_0319
内容概要:文章阐述了银行采用人工智能(AI)技术替代传统系统的紧迫性和收益,讨论了通过构建现代化的数据和技术平台实现效率提升的方法,同时强调实施过程中确保数据质量和建立信任的重要性。文中提及,在金融行业中,若想优化业绩则必须拥抱AI带来的机遇,并为此进行经营模式的革新。根据Workday主办的研讨会内容,PwC金融服务风险与监管领导和Workday金融服务高层指出了大部分银行对AI认知不足的问题,强调AI在金融、人力资源以及IT等领域的广泛应用潜力及具体应用场景,如欺诈检测、技能映射和财务管理方面的作用。并且提到了AI部署过程中可能出现的技术与非技术难题及相应解决办法,鼓励金融机构及时投资建设新型基础设施,以保持竞争力。 适用人群:银行及其他金融机构管理人员;金融科技领域的专业研究人员;对企业数字化和智能化转型感兴趣的商业分析师、投资者;从事信息技术咨询工作的顾问。 使用场景及目标:本文可以帮助金融机构制定合理的技术发展战略规划,评估是否有必要推进AI技术转型,同时也为希望涉足银行科技项目的开发者提供了宝贵的市场洞察,帮助理解行业内普遍存在的困难与潜在的市场需求。此外,对于想要了解银行
matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
chromedriver-linux64-136.0.7058.0.zip
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
内容概要:本文档介绍了背压热电联产(CHP)发电厂的详细设计步骤,涵盖确定各状态点的压力、温度、比焓以及质量流率的具体方法。主要内容围绕计算净电功率、燃料消耗及其效率展开,并提供了T-s图绘制的指南。针对每个组件(如蒸汽轮机、冷凝器、除氧器等),都列出了详细的效率假设和压力损失表,为实际工程应用提供了宝贵的参考资料和操作指导。同时,该作业任务要求学生从给定初始值中选择合适的操作条件进行系统模拟,并利用课程讲义和Moodle平台资料完成计算流程。 适用人群:对能源转换和动力设备设计感兴趣的学生或者初涉该领域的工程师。 使用场景及目标:旨在帮助学员深入了解并掌握背压热电联产装置的工作原理和技术指标计算的方法论,通过实践练习提高他们的问题解决能力。 其他说明:文档强调了稳态运行假设的重要性,即物质平衡等于能量输入等于输出的原则,并鼓励参与者借助附录提供的典型操作参数图表来寻找解决问题的方向。此外,它还特别指出对于一些变量值求解可能需要迭代法来进行调整,直至获得稳定结果。提交的报告必须含有一份详细的T-s图和其他必要附件。
机器学习_市财政收入分析(含数据集)
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
tracy_3cd_01_0318
lusted_3cd_01_0918
题目:基于51的自动分拣系统设计 主控:AT89C52 测距模块:超声波测距模块 甲醛传感器(ADC0832+滑动变阻器模拟) 粉尘传感器(PCF8591+滑动变阻器模拟) 净化模块(继电器驱动蓝灯) 排风模块(继电器驱动绿灯) 电源电路(5V降压为3.3V供电) 显示模块(LCD1602) 声光报警 按键(3个,切换阈值选择,阈值加减) 检测物体:开关模拟 电机驱动模块(继电器驱动直流电机转动) 功能: 1.显示屏显示甲醛,粉尘浓度可以切换设置阈值。 2.通过甲醛传感器检测车间环境,大于阈值时声光报警并启动净化模块。 3.通过粉尘传感器检测车间环境,大于阈值时声光报警并启动排风模块。 4.采用超声波传感器进行物体超高监测异常(大于XX距离)时触发声光报警 5.检测到物体(开关闭合)直流电机转动(模拟传送带)