`

Hash算法 转载

阅读更多
    一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用。 
 
    一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:
 
1、平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。
 
2、单调性(Monotonicity):单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到原有的或者新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。 
 
3、分散性(Spread):在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。 
 
4、负载(Load):负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同 的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。
 
    在分布式集群中,对机器的添加删除,或者机器故障后自动脱离集群这些操作是分布式集群管理最基本的功能。如果采用常用的hash(object)%N算法,那么在有机器添加或者删除后,很多原有的数据就无法找到了,这样严重的违反了单调性原则。接下来主要讲解一下一致性哈希算法是如何设计的:
 
环形Hash空间
按照常用的hash算法来将对应的key哈希到一个具有2^32次方个桶的空间中,即0~(2^32)-1的数字空间中。现在我们可以将这些数字头尾相连,想象成一个闭合的环形。如下图
                                                                         
把数据通过一定的hash算法处理后映射到环上
现在我们将object1、object2、object3、object4四个对象通过特定的Hash函数计算出对应的key值,然后散列到Hash环上。如下图:
    Hash(object1) = key1;
    Hash(object2) = key2;
    Hash(object3) = key3;
    Hash(object4) = key4;
                                                           
将机器通过hash算法映射到环上
在采用一致性哈希算法的分布式集群中将新的机器加入,其原理是通过使用与对象存储一样的Hash算法将机器也映射到环中(一般情况下对机器的hash计算是采用机器的IP或者机器唯一的别名作为输入值),然后以顺时针的方向计算,将所有对象存储到离自己最近的机器中。
假设现在有NODE1,NODE2,NODE3三台机器,通过Hash算法得到对应的KEY值,映射到环中,其示意图如下:
Hash(NODE1) = KEY1;
Hash(NODE2) = KEY2;
Hash(NODE3) = KEY3;
                                                             
通过上图可以看出对象与机器处于同一哈希空间中,这样按顺时针转动object1存储到了NODE1中,object3存储到了NODE2中,object2、object4存储到了NODE3中。在这样的部署环境中,hash环是不会变更的,因此,通过算出对象的hash值就能快速的定位到对应的机器中,这样就能找到对象真正的存储位置了。
 
机器的删除与添加
普通hash求余算法最为不妥的地方就是在有机器的添加或者删除之后会照成大量的对象存储位置失效,这样就大大的不满足单调性了。下面来分析一下一致性哈希算法是如何处理的。
1. 节点(机器)的删除
    以上面的分布为例,如果NODE2出现故障被删除了,那么按照顺时针迁移的方法,object3将会被迁移到NODE3中,这样仅仅是object3的映射位置发生了变化,其它的对象没有任何的改动。如下图:
                                                              
2. 节点(机器)的添加 
    如果往集群中添加一个新的节点NODE4,通过对应的哈希算法得到KEY4,并映射到环中,如下图:
                                                              
    通过按顺时针迁移的规则,那么object2被迁移到了NODE4中,其它对象还保持这原有的存储位置。通过对节点的添加和删除的分析,一致性哈希算法在保持了单调性的同时,还是数据的迁移达到了最小,这样的算法对分布式集群来说是非常合适的,避免了大量数据迁移,减小了服务器的的压力。
 
平衡性
根据上面的图解分析,一致性哈希算法满足了单调性和负载均衡的特性以及一般hash算法的分散性,但这还并不能当做其被广泛应用的原由,因为还缺少了平衡性。下面将分析一致性哈希算法是如何满足平衡性的。hash算法是不保证平衡的,如上面只部署了NODE1和NODE3的情况(NODE2被删除的图),object1存储到了NODE1中,而object2、object3、object4都存储到了NODE3中,这样就照成了非常不平衡的状态。在一致性哈希算法中,为了尽可能的满足平衡性,其引入了虚拟节点。
    ——“虚拟节点”( virtual node )是实际节点(机器)在 hash 空间的复制品( replica ),一实际个节点(机器)对应了若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在 hash 空间中以hash值排列。
以上面只部署了NODE1和NODE3的情况(NODE2被删除的图)为例,之前的对象在机器上的分布很不均衡,现在我们以2个副本(复制个数)为例,这样整个hash环中就存在了4个虚拟节点,最后对象映射的关系图如下:
                                                                 
根据上图可知对象的映射关系:object1->NODE1-1,object2->NODE1-2,object3->NODE3-2,object4->NODE3-1。通过虚拟节点的引入,对象的分布就比较均衡了。那么在实际操作中,正真的对象查询是如何工作的呢?对象从hash到虚拟节点到实际节点的转换如下图:
                                         
“虚拟节点”的hash计算可以采用对应节点的IP地址加数字后缀的方式。例如假设NODE1的IP地址为192.168.1.100。引入“虚拟节点”前,计算 cache A 的 hash 值:
Hash(“192.168.1.100”);
引入“虚拟节点”后,计算“虚拟节”点NODE1-1和NODE1-2的hash值:
Hash(“192.168.1.100#1”); // NODE1-1
Hash(“192.168.1.100#2”); // NODE1-2
 
参考:

 

分享到:
评论

相关推荐

    高运算性能,低碰撞率的hash算法MurmurHash算法.zip

    MurmurHash算法由Austin Appleby创建于2008年,现已应用到Hadoop、libstdc 、nginx、libmemcached,Redis,Memcached,Cassandra,HBase,Lucene等开源系统。2011年Appleby被Google雇佣,随后Google推出其变种的...

    20多个常用的Hash算法C++ 实现

    Hash函数集合,包含主流的hash函数: nginx_hash算法,OpenSSL_hash算法,RSHash,JSHash,PJWHash,ELFHash,BKDRHash,DJBHash,DEKHash,APHash等等!

    C语言实现hash算法

    在IT领域,哈希算法(Hash Algorithm)是一种用于将任意长度的数据转化为固定长度输出的算法。这个过程通常称为哈希或散列。哈希算法在信息安全、数据完整性验证、密码学等多个方面都有着广泛的应用。本项目是用...

    常用的hash算法(java实现)

    在计算机科学中,哈希(Hash)算法是一种用于将任意长度的数据映射为固定长度输出的函数。这种输出通常称为哈希值或消息摘要。在Java编程语言中,实现哈希算法可以方便地用于数据验证、查找表以及密码存储等多种用途...

    图像的相似度Hash算法(aHash的delphi实现).rar

    在IT领域,Hash算法是一种广泛应用于数据验证、存储和比较的技术。它将任意长度的数据转换成固定长度的输出,通常称为Hash值或指纹。在这个压缩包中,我们重点关注的是图像的相似度Hash算法,特别是平均哈希算法(a...

    Java实现GeoHash算法

    Java实现GeoHash算法是一种在IT领域中用于地理位置数据存储和检索的技术。GeoHash将经纬度坐标转换为字符串,使得地理位置可以被高效地索引和查询。这种算法利用了空间分割和编码策略,使得相邻的位置在编码后具有...

    hash算法工具类

    一个hash算法的工具类,里面包含了一些常用的hash算法

    Hash算法MD5实验报告材料.doc

    "Hash算法MD5实验报告材料" 本实验报告主要介绍了Hash算法MD5的实验报告,旨在通过实际编程来了解MD5算法的加密和解密过程,并加深对Hash算法的认识。 一、Hash算法的定义 Hash算法是一种将输入数据转换为固定...

    geohash算法实现Java代码

    GeoHash算法是一种基于地理坐标的分布式空间索引技术,它通过将地球表面的经纬度坐标转化为可比较的字符串,使得我们可以高效地进行地理位置的搜索、范围查询以及邻居查找等操作。这种算法尤其适用于大数据和分布式...

    hash算法相关介绍

    ### Hash算法相关介绍 在计算机科学领域,哈希(Hash)是一种将任意长度的数据映射为固定长度数据的技术。哈希算法广泛应用于多种场景中,包括但不限于数据完整性验证、密码存储、快速查找等。本文主要介绍了几种...

    geohash算法实现

    Geohash算法实现,经纬度到geohash编码的实现

    hash算法C代码实现

    哈希(Hash)算法在计算机科学中扮演着重要的角色,特别是在数据存储、文件校验、信息安全等领域。本文将深入探讨哈希算法的原理,并提供一个简单的C语言实现示例。 哈希算法,又称为散列函数,是一种将任意长度的...

    hash算法大全.doc

    Hash 算法大全 在计算机科学中,Hash 算法是一种将任意长度的字符串转换为固定长度的字符串的算法。Hash 算法有很多种,包括加法 Hash、旋转 Hash、一次一个 Hash、Bernstein's Hash 等。在这里,我们将详细介绍...

    python版本的各种hash算法

    python版本的各种hash算法

    Hash算法大全.txt

    ### Hash算法大全 #### 一、引言 Hash算法是一种将任意长度的数据转换为固定长度输出的方法,这种输出通常称为Hash值或Hash码。在计算机科学领域,Hash算法被广泛应用于数据查找、密码存储以及数据完整性校验等多...

    Go-fasthashgo写的一个hash算法比标准hash算法的速度更快占用内存更低

    在编程领域,哈希算法(Hash Algorithm)是用于将任意长度的数据映射为固定长度的输出,通常这个输出称为哈希值。哈希算法在很多场景下被广泛应用,如数据完整性校验、缓存查找、数据库索引等。Go语言标准库中提供了...

    几种经典的Hash算法的实现(源代码)

    ### 经典Hash算法概述与实现 #### 一、引言 哈希算法在计算机科学领域扮演着极其重要的角色,特别是在数据检索、信息安全以及数据完整性校验等方面。它能够将任意长度的数据转换成一个固定长度的哈希值,这一过程在...

Global site tag (gtag.js) - Google Analytics