1、线程池概念
多线程技术主要解决处理器单元内多个线程执行的问题,可以显著减少处理器单元的闲置时间,增加处理器单元的吞吐能力。假设一个服务器完成一项任务所需时间为:
>T1创建线程时间
>T2在线程中执行任务的时间
>T3销毁线程时间
如果T1+T3远大于T2,则可以选择线程池以提高服务器性能。线程池正是关注如何缩短和调整T1、T3时间的技术,从而提高服务器程序的性能,把T1、T3安排在服务器启动、结束的时间段或者一些空闲的时间段,这样当客户发送请求时就不会有T1、T3的开销了。
2、基本组成
1)、线程池管理器(ThreadPool):用于创建并管理线程池,包括创建线程池,添加任务,销毁线程池。
2)、工作线程(PoolWorker):线程池中的线程,没有任务时处于等待状态,可以循环执行任务。
3)、任务接口(Task):每个任务必须实现的接口,以供工作线程调度任务的执行,它主要规定了任务的入口,任务执行后的收尾工作,任务的执行状态等。
4)、任务队列(taskQueue):存放未处理的任务,提供一种缓存机制。
3、核心思想
外部任务可选择性实现Task接口,将其作为参数传递给线程管理器执行任务的方法中
线程管理器中控制着任务队列的对象,在其执行任务的方法中,实际是将任务添加到队列中
内部类工作线程,会扫描任务队列,空闲的工作线程会从队列中取出任务并执行
4、示例代码
1)、任务类
public class Task implements Runnable { private static volatile int i = 1; // 执行任务 @Override public void run() { System.out.println("任务" + (i++) + "已完成"); } }
2)、线程池类,线程管理器:创建线程、执行任务、销毁线程、获取线程基本信息
public final class ThreadPool { // 线程池中默认线程数 private static int worker_num = 5; // 工作线程 private WorkThread[] workThreads; // 完成任务数 private static volatile int finished_task = 0; // 任务队列,List线程不安全 private List<Runnable> taskQueue = new Vector<>(); // 单例模式 private static ThreadPool threadPool; private ThreadPool() { this(5); } // 创建线程池,worker_num为线程池中工作线程的个数 private ThreadPool(int worker_num) { ThreadPool.worker_num = worker_num; workThreads = new WorkThread[worker_num]; for (int i = 0; i < worker_num; i++) { workThreads[i] = new WorkThread(); workThreads[i].start();// 开启线程 } } public static ThreadPool createThreadPool() { return createThreadPool(ThreadPool.worker_num); } public static ThreadPool createThreadPool(int worker_num) { if (worker_num <= 0) { worker_num = ThreadPool.worker_num; } if (threadPool == null) { threadPool = new ThreadPool(worker_num); } return threadPool; } // 执行任务,只是把任务加入到队列中,具体执行由线程池管理器决定 public void excute(Runnable task) { synchronized (taskQueue) { taskQueue.add(task); taskQueue.notify(); } } // 批量执行,只是把任务加入到队列中,具体执行由线程池管理器决定 public void excute(Runnable[] tasks) { synchronized (taskQueue) { for (Runnable task : tasks) { taskQueue.add(task); taskQueue.notify(); } } } // 批量执行,只是把任务加入到队列中,具体执行由线程池管理器决定 public void excute(List<Runnable> tasks) { synchronized (taskQueue) { for (Runnable task : tasks) { taskQueue.add(task); taskQueue.notify(); } } } // 销毁线程池,保证所有任务都完成的情况下才销毁所有线程,否则等待任务完成才销毁 public void destroy() { // 如果还有任务未完成,就先等待 while (!taskQueue.isEmpty()) { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } } // 工作线程停止,且置为null for (int i = 0; i < worker_num; i++) { workThreads[i].stopWorker(); workThreads[i] = null; } threadPool = null; taskQueue.clear(); } // 返回工作线程的个数 public int getWorkThreadNumber() { return worker_num; } // 返回已完成任务的个数,实际上指出了任务队列的个数 public int getFinishedTaskNumber() { return finished_task; } // 返回未处理的任务个数,即任务队列的长度 public int getWaitTaskNumber() { return taskQueue.size(); } @Override public String toString() { synchronized (taskQueue) { return "WorkThread number:" + worker_num + ",finished work number:" + finished_task + ",wait task number:" + getWaitTaskNumber(); } } //内部类,工作线程 private class WorkThread extends Thread { // 线程是否有效,用于控制线程的结束 private boolean isRunning = true; // 如果任务队列不空,则取出任务执行;如果任务队列空,则等待 @Override public void run() { Runnable r = null; while (isRunning) { synchronized (taskQueue) { while (isRunning && taskQueue.isEmpty()) {// 队列为空 try { taskQueue.wait(200); } catch (InterruptedException e) { e.printStackTrace(); } } if (!taskQueue.isEmpty()) { r = taskQueue.remove(0); } if (r != null) { r.run();// 执行任务 } finished_task++; r = null; } } } // 停止工作,让程序自然执行完run方法,自然结束 public void stopWorker() { isRunning = false; } } }
3)、客户端测试
public class Client { public static void main(String[] args) { // 创建3个线程的线程池 ThreadPool t = ThreadPool.createThreadPool(3); t.excute(new Runnable[] { new Task(), new Task(), new Task() }); t.excute(new Runnable[] { new Task(), new Task(), new Task() }); t.excute(new Runnable[] { new Task(), new Task(), new Task() }); t.excute(new Runnable[] { new Task(), new Task(), new Task() }); // 所有线程都执行完毕后才destroy t.destroy(); System.out.println(t); } }
相关推荐
线程池是一种多线程处理形式,通过预先创建一定数量的线程并管理它们,以提高系统的效率和响应性。在计算机科学中,特别是在软件开发领域,线程池是操作系统或者编程语言中的一种资源管理技术。它允许程序预先启动一...
corePoolSize:核心池的大小,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中; ...
阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池阻塞线程池...
一、要实现高效的线程池,可以考虑以下几点 二、实现线程池可以按照以下步骤进行 三、简单的C++线程池代码示例 四、 基于boost编写的源码库 - 线程池 4.1 基于boost编写的源码库地址 4.2 boost线程池的先进先出、...
### 线程池原理及创建(C++实现) #### 一、线程池的重要性 在现代计算环境中,网络服务器面临着处理大量并发请求的挑战,其中包括但不限于Web服务器、电子邮件服务器和数据库服务器。这类服务器通常需要在短时间...
文章通过实例展示了如何创建一个全局线程池类,该类中封装了线程池对象,并提供了向线程池提交任务、检查任务是否在运行等方法。全局线程池的生命周期与Django主线程的生命周期一致,确保了线程资源的合理释放。 5....
线程池是多线程编程中的一个重要概念,它是一种线程使用模式,通过预先创建一组线程并维护一个线程集合来处理并发任务。在Windows操作系统中,内建的线程池API(Thread Pool API)提供了高效且灵活的线程管理机制,...
线程池是一种在多线程编程中非常重要的概念,它能有效地管理和调度系统中的线程资源,从而提高系统的效率和响应速度。在这个简单的线程池实现中,我们可以通过`pthread_pool.cpp`、`MainFunctionForTest.cpp`、`...
在编程领域,线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务。线程池在C++中是提高程序效率和资源管理的重要工具,尤其在处理大量并发操作时。本文将深入探讨VC++中...
Java8并行流中自定义线程池操作示例 Java8并行流中自定义线程池操作示例主要介绍了Java8并行流中自定义线程池操作,结合实例形式分析了并行流的相关概念、定义及自定义线程池的相关操作技巧。 1. 概览 Java8引入了...
Linux 线程池创建 C 实现 线程池是一种常用的并发编程技术,它可以提高应用程序的性能和响应速度。在 Linux 系统中,使用 C 语言创建线程池可以实现高效的并发处理。 什么时候需要创建线程池呢?简单的说,如果一...
DELPHI的线程池(ThreadPool)是一种高效管理并发任务的技术,它允许程序在需要时创建线程,而不是每次需要执行任务时都手动创建。线程池通过预先创建一组线程,然后根据需要分配任务,减少了线程创建和销毁的开销,...
本篇文章将重点探讨两种线程池实现:精易模块线程池和鱼刺模块线程池,并通过源码分析来展示它们的特点和用法。 首先,精易模块(SanYe Module)是由中国程序员SanYe开发的一系列开源模块,其中包含了线程池的实现...
在Linux系统中,线程池是一种高效的进程管理方式,它允许多个任务并行执行,同时限制了系统中并发线程的数量,以优化资源分配和调度。本项目实现了利用线程池进行目录拷贝的功能,这涉及到多个重要的编程概念和技术...
线程池管理和多线程上传是并发编程中的一个重要实践,特别是在大数据传输和网络服务中。在Java等编程语言中,线程池通过有效地管理和复用线程资源,避免了频繁创建和销毁线程带来的开销,提升了系统性能。下面将详细...
线程池是一种优化资源管理的机制,通过预先创建并维护一组可重用的线程,避免频繁地创建和销毁线程带来的性能开销。在Java、C++等编程语言中,线程池广泛应用于并发处理,提高系统效率,降低系统的资源消耗。本项目...
一、线程池 1、为什么需要使用线程池 1.1 创建/销毁线程伴随着系统开销,过于频繁的创建/销毁线程,会很大程度上影响处理效率。 记创建线程消耗时间T1,执行任务消耗时间T2,销毁线程消耗时间T3,如果T1+T3>T2,那...
线程池是多线程编程中一个重要的概念,它能够优化系统资源的使用,提高系统的响应速度和效率。本篇文章将深入探讨C++中的线程池实现,并通过名为“OEasyPool-1.0”的示例来展示其工作原理。 线程池是预先创建并维护...
在C#编程中,线程池(ThreadPool)是一种高效的线程管理机制,它允许开发者创建并管理多个线程,而无需直接操作线程对象。线程池中的线程可以复用,减少了创建和销毁线程的开销。当我们需要执行大量短生命周期的任务...