以下配置主要针对分代垃圾回收算法而言。
堆大小设置
年轻代的设置很关键
JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx3550m -Xms3550m -Xmn2g –Xss128k
-Xmx3550m:设置JVM最大可用内存为3550M。
-Xms3550m:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
-Xmn2g:设置年轻代大小为2G。整个堆大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。
java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4
-XX:SurvivorRatio=4
-XX:MaxPermSize=16m
-XX:MaxTenuringThreshold=0
-XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
-XX:MaxPermSize=16m:设置持久代大小为16m。
-XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。
回收器选择
JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。
吞吐量优先的并行收集器
如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
典型配置:
java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-XX:+UseParallelGC:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
-XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
-XX:+UseParallelOldGC:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100
-XX:MaxGCPauseMillis=100:设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
-XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。
响应时间优先的并发收集器
如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
典型配置:
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
-XX:+UseParNewGC:设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
-XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片
辅助信息
JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:
-XX:+PrintGC:输出形式:[GC 118250K->113543K(130112K), 0.0094143 secs] [Full GC 121376K->10414K(130112K), 0.0650971 secs]
-XX:+PrintGCDetails:输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs] [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
-XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
-XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用。输出形式:Application time: 0.5291524
seconds
-XX:+PrintGCApplicationStoppedTime:打印垃圾回收期间程序暂停的时间。可与上面混合使用。输出形式:Total time for which application threads were stopped: 0.0468229 seconds
-XX:PrintHeapAtGC: 打印GC前后的详细堆栈信息。输出形式:
- 34.702: [GC {Heap before gc invocations=7:
- def new generation total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)
- eden space 49152K, 99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)
- from space 6144K, 55% used [0x221d0000, 0x22527e10, 0x227d0000)
- to space 6144K, 0% used [0x21bd0000, 0x21bd0000, 0x221d0000)
- tenured generation total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)
- the space 69632K, 3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)
- compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
- the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
- ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
- rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
- 34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:
- def new generation total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)
- eden space 49152K, 0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)
- from space 6144K, 55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)
- to space 6144K, 0% used [0x221d0000, 0x221d0000, 0x227d0000)
- tenured generation total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)
- the space 69632K, 4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)
- compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
- the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
- ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
- rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
- }
- , 0.0757599 secs]
-Xloggc:filename:与上面几个配合使用,把相关日志信息记录到文件以便分析。
常见配置汇总
堆设置
-Xms:初始堆大小
-Xmx:最大堆大小
-XX:NewSize=n:设置年轻代大小
-XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
-XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
-XX:MaxPermSize=n:设置持久代大小
收集器设置
-XX:+UseSerialGC:设置串行收集器
-XX:+UseParallelGC:设置并行收集器
-XX:+UseParalledlOldGC:设置并行年老代收集器
-XX:+UseConcMarkSweepGC:设置并发收集器
垃圾回收统计信息
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-Xloggc:filename
并行收集器设置
-XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
-XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
-XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
并发收集器设置
-XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
-XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。
调优总结年轻代大小选择
响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
年老代大小选择
响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
1. 并发垃圾收集信息
2. 持久代并发收集次数
3. 传统GC信息
4. 花在年轻代和年老代回收上的时间比例
减少年轻代和年老代花费的时间,一般会提高应用的效率
吞吐量优先的应用
一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
较小堆引起的碎片问题
因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:
1. -XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。
2. -XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩
相关推荐
JVM调优涉及到堆内存的配置、垃圾回收机制的优化以及选择合适的垃圾收集器。以下是对文档中提到的知识点的详细说明: 1. 堆内存设置: - **年轻代(Young Generation)**:年轻代内存大小的设置对JVM性能有很大...
1.8 JVM调优总结(七)-典型配置举例 1.9 JVM调优总结(八)-典型配置举例2 31 1.10 JVM调优总结(九)-新一代的垃圾回收算法34 1.11 JVM调优总结(十)-调优方法38 1.12 JVM调优总结(十一)-反思
### JVM调优总结 #### 一、概述 Java虚拟机(JVM)是Java程序的核心运行环境,对于提高Java应用程序性能至关重要。JVM调优是指通过调整JVM的配置参数来优化程序性能的过程。本文将围绕JVM调优展开讨论,重点分析数据...
本文将对 JVM 调优进行总结,涵盖了 JVM 调优的基本概念、垃圾回收算法、分代垃圾回收、典型配置举例、调优方法、反思等方面的内容。 JVM 调优的基本概念 JVM 调优是指通过调整 JVM 的参数和配置来提高 Java 应用...
JVM调优总结 -Xms -Xmx -Xmn -Xss JVM 调优是 Java virtual machine 的性能优化,通过调整 JVM 的参数来提高 Java 应用程序的性能。其中,-Xms、-Xmx、-Xmn、-Xss 是四个重要的参数,分别控制 JVM 的初始堆大小、...
【JVM调优总结:调优方法】 Java虚拟机(JVM)调优是一项关键的任务,旨在优化应用程序的性能,减少内存泄漏,并确保系统稳定运行。以下是对JVM调优的一些核心方法和工具的详细说明。 ### JVM调优工具 #### 1. ...
### JVM调优与垃圾回收机制详解 #### 一、引言 随着软件系统的复杂度不断提高,性能优化成为了软件开发中的一个重要环节。对于Java应用程序来说,Java虚拟机(JVM)的性能直接影响着应用的整体表现。垃圾回收(GC)...
在典型配置举例部分,文档提供了实例来说明如何设置JVM参数来优化垃圾回收和内存分配。此外,文档还提到了新一代垃圾回收算法,例如G1垃圾回收器,它旨在解决之前算法的一些限制,比如暂停时间过长的问题。 最后,...
### JVM调优总结:Xms、Xmx、Xmn、Xss 在Java虚拟机(JVM)的运行过程中,合理的参数配置对于提高程序性能至关重要。本文将对JVM调优中的几个关键参数进行深入解析,包括-Xms、-Xmx、-Xmn和-Xss等,帮助开发者更好...
3. JVM调优:JVM调优通常指对JVM进行配置,优化性能以应对特定的应用需求。常见的调优手段包括调整堆内存大小、设置垃圾回收器(GC)、调整线程堆栈大小、选择合适的垃圾回收策略和参数等。 4. JAVA并发:Java并发...
JVM面试资料。 JVM结构:类加载器,执行引擎,本地方法接口,本地内存结构; 四大垃圾回收算法:复制算法、标记-清除算法、标记-整理算法、分代收集算法 ...JVM调优:命令行指令,设置堆内存大小的参数
《JVM调优总结》是一本关于Java虚拟机性能优化的指南,由作者"和你在一起"编写。本文档旨在汇总JVM调优的关键概念和技术,帮助开发者避免在实际工作中遇到性能瓶颈时盲目摸索,从而提升Java应用的运行效率。 1. **...
在深入讨论JVM(Java虚拟机)调优之前,我们有必要先了解一下虚拟机的基本概念和堆栈...通过上述的分析和总结,我们可以得出,JVM调优是一个涉及多方面知识的复杂过程,需要开发者具备扎实的理论基础和丰富的实践经验。
#### 三、JVM调优基础知识 理解了JVM的基本概念之后,接下来介绍JVM调优的基础知识。 ##### 1. 堆与栈的区别 - **逻辑区分**:栈代表处理逻辑,而堆代表数据。这种逻辑上的区分有助于程序设计者更加清晰地组织...
本文将总结JVM性能调优的经验和技巧,并提供一些实用的配置参数和建议。 一、堆大小设置 堆大小是JVM性能调优中的一个关键参数。堆大小的设置直接影响到系统的性能和稳定性。堆大小有三方面限制:相关操作系统的...
"JVM调优总结" JVM调优是一种非常重要的技术,能够帮助我们提高Java应用程序的性能和稳定性。在这篇文章中,我们将总结JVM调优的一些基本概念和算法。 一、相关概念 JVM调优的基本概念包括引用计数、标记-清除、...
### 马士兵JVM调优笔记知识点梳理 ...以上是基于《马士兵JVM调优笔记》文档内容整理的关键知识点总结。通过理解和掌握这些概念与技巧,可以帮助开发者更高效地管理和优化Java应用程序的内存使用情况。
JVM 调优总结 JVM 调优是一个复杂的过程,需要从多个角度进行考虑。下面是对 JVM 调优的一些总结经验。 JVM 调优前的准备 在进行 JVM 调优之前,需要了解 JVM 的基本概念和原理,包括 JVM 的架构、垃圾回收机制、...
《JVM调优总结》与《Java虚拟机:JVM高级特性与最佳实践》是两本深入探讨Java虚拟机(JVM)的书籍,对于Java开发者来说,它们提供了丰富的知识和实践经验,尤其对于想要理解JVM工作原理以及进行性能优化的专业人士更...
在现代的软件开发与运行环境中,Java虚拟机(JVM)的性能调优是非常重要的一环,特别是在处理大型应用程序或者服务时,合适的JVM调优能够显著提升系统性能和稳定性。本篇文档详细介绍了JVM调优工具的命令使用及其...