转载 http://www.aboutyun.com/thread-7513-1-1.html
问题导读:
1.DataNode的http服务的端口、ipc服务的端口分别是哪个?
2.NameNode的http服务的端口、ipc服务的端口分别是哪个?
3.journalnode的http服务的端口、ipc服务的端口分别是哪个?
4.ResourceManager的http服务端口是哪个?
5.NodeManager的http服务端口是哪个?
6.Master的http服务的端口、ipc服务的端口分别是哪个?
7.3888是谁的端口,用来做什么?
扩展:
hadoop1.X对应端口是哪个?
9000、9001分别对应是hadoop2.X的那个端口?
Hadoop集群的各部分一般都会使用到多个端口,有些是daemon之间进行交互之用,有些是用于RPC访问以及HTTP访问。而随着Hadoop周边组件的增多,完全记不住哪个端口对应哪个应用,特收集记录如此,以便查询。
这里包含我们使用到的组件:HDFS, YARN, HBase, Hive, ZooKeeper:
组件 | 节点 | 默认端口 | 配置 | 用途说明 |
HDFS | DataNode | 50010 | dfs.datanode.address | datanode服务端口,用于数据传输 |
HDFS | DataNode | 50075 | dfs.datanode.http.address | http服务的端口 |
HDFS | DataNode | 50475 | dfs.datanode.https.address | https服务的端口 |
HDFS | DataNode | 50020 | dfs.datanode.ipc.address | ipc服务的端口 |
HDFS | NameNode | 50070 | dfs.namenode.http-address | http服务的端口 |
HDFS | NameNode | 50470 | dfs.namenode.https-address | https服务的端口 |
HDFS | NameNode | 8020 | fs.defaultFS | 接收Client连接的RPC端口,用于获取文件系统metadata信息。 |
HDFS | journalnode | 8485 | dfs.journalnode.rpc-address | RPC服务 |
HDFS | journalnode | 8480 | dfs.journalnode.http-address | HTTP服务 |
HDFS | ZKFC | 8019 | dfs.ha.zkfc.port | ZooKeeper FailoverController,用于NN HA |
YARN | ResourceManager | 8032 | yarn.resourcemanager.address | RM的applications manager(ASM)端口 |
YARN | ResourceManager | 8030 | yarn.resourcemanager.scheduler.address | scheduler组件的IPC端口 |
YARN | ResourceManager | 8031 | yarn.resourcemanager.resource-tracker.address | IPC |
YARN | ResourceManager | 8033 | yarn.resourcemanager.admin.address | IPC |
YARN | ResourceManager | 8088 | yarn.resourcemanager.webapp.address | http服务端口 |
YARN | NodeManager | 8040 | yarn.nodemanager.localizer.address | localizer IPC |
YARN | NodeManager | 8042 | yarn.nodemanager.webapp.address | http服务端口 |
YARN | NodeManager | 8041 | yarn.nodemanager.address | NM中container manager的端口 |
YARN | JobHistory Server | 10020 | mapreduce.jobhistory.address | IPC |
YARN | JobHistory Server | 19888 | mapreduce.jobhistory.webapp.address | http服务端口 |
HBase | Master | 60000 | hbase.master.port | IPC |
HBase | Master | 60010 | hbase.master.info.port | http服务端口 |
HBase | RegionServer | 60020 | hbase.regionserver.port | IPC |
HBase | RegionServer | 60030 | hbase.regionserver.info.port | http服务端口 |
HBase | HQuorumPeer | 2181 | hbase.zookeeper.property.clientPort | HBase-managed ZK mode,使用独立的ZooKeeper集群则不会启用该端口。 |
HBase | HQuorumPeer | 2888 | hbase.zookeeper.peerport | HBase-managed ZK mode,使用独立的ZooKeeper集群则不会启用该端口。 |
HBase | HQuorumPeer | 3888 | hbase.zookeeper.leaderport | HBase-managed ZK mode,使用独立的ZooKeeper集群则不会启用该端口。 |
Hive | Metastore | 9083 | /etc/default/hive-metastore中export PORT=<port>来更新默认端口 | |
Hive | HiveServer | 10000 | /etc/hive/conf/hive-env.sh中export HIVE_SERVER2_THRIFT_PORT=<port>来更新默认端口 | |
ZooKeeper | Server | 2181 | /etc/zookeeper/conf/zoo.cfg中clientPort=<port> | 对客户端提供服务的端口 | |
ZooKeeper | Server | 2888 | /etc/zookeeper/conf/zoo.cfg中server.x=[hostname]:nnnnn[:nnnnn],标蓝部分 | follower用来连接到leader,只在leader上监听该端口。 |
ZooKeeper | Server | 3888 | /etc/zookeeper/conf/zoo.cfg中server.x=[hostname]:nnnnn[:nnnnn],标蓝部分 | 用于leader选举的。只在electionAlg是1,2或3(默认)时需要。 |
所有端口协议均基于TCP。
对于存在Web UI(HTTP服务)的所有hadoop daemon,有如下url:
/logs
日志文件列表,用于下载和查看
/logLevel
允许你设定log4j的日志记录级别,类似于hadoop daemonlog
/stacks
所有线程的stack trace,对于debug很有帮助
/jmx
服务端的Metrics,以JSON格式输出。
/jmx?qry=Hadoop:*会返回所有hadoop相关指标。
/jmx?get=MXBeanName::AttributeName 查询指定bean指定属性的值,例如/jmx?get=Hadoop:service=NameNode,name=NameNodeInfo::ClusterId会返回ClusterId。
这个请求的处理类:org.apache.hadoop.jmx.JMXJsonServlet
而特定的Daemon又有特定的URL路径特定相应信息。
NameNode:http://:50070/
/dfshealth.jsp
HDFS信息页面,其中有链接可以查看文件系统
/dfsnodelist.jsp?whatNodes=(DEAD|LIVE)
显示DEAD或LIVE状态的datanode
/fsck
运行fsck命令,不推荐在集群繁忙时使用!
DataNode:http://:50075/
/blockScannerReport
每个datanode都会指定间隔验证块信息
这里在补充一些:
表 1. 新旧 Hadoop 脚本 / 变量 / 位置变化表
改变项 | 原框架中 | 新框架中(Yarn) | 备注 |
配置文件位置 | ${hadoop_home_dir}/conf | hadoop_home_dir}/etc/hadoop/Yarn | 框架也兼容老的${hadoop_home_dir}/conf 位置配置,启动时会检测是否存在老的 conf 目录,如果存在将加载 conf 目录下的配置,否则加载 etc 下配置 |
启停脚本 | ${hadoop_home_dir}/bin/start(stop)-all.sh | ${hadoop_home_dir}/sbin/start(stop)-dfs.sh ${hadoop_home_dir}/bin/start(stop)-all.sh | 新的 Yarn 框架中启动分布式文件系统和启动Yarn 分离,启动 / 停止分布式文件系统的命令位于 ${hadoop_home_dir}/sbin 目录下,启动/ 停止 Yarn 框架位于${hadoop_home_dir}/bin/ 目录下 |
JAVA_HOME全局变量 | ${hadoop_home_dir}/bin/start-all.sh 中 | ${hadoop_home_dir}/etc/hadoop/hadoop-env.sh ${hadoop_home_dir}/etc/hadoop/Yarn-env.sh | Yarn 框架中由于启动 hdfs 分布式文件系统和启动 MapReduce 框架分离,JAVA_HOME 需要在hadoop-env.sh 和 Yarn-env.sh 中分别配置 |
HADOOP_LOG_DIR全局变量 | 不需要配置 | ${hadoop_home_dir}/etc/hadoop/hadoop-env.sh | 老框架在 LOG,conf,tmp 目录等均默认为脚本启动的当前目录下的 log,conf,tmp 子目录Yarn 新框架中 Log 默认创建在 Hadoop 用户的 home 目录下的 log 子目录,因此最好在${hadoop_home_dir}/etc/hadoop/hadoop-env.sh配置 HADOOP_LOG_DIR,否则有可能会因为你启动hadoop 的用户的 .bashrc 或者 .bash_profile 中指定了其他的 PATH 变量而造成日志位置混乱,而该位置没有访问权限的话启动过程中会报错 |
由于新的 Yarn 框架与原 Hadoop MapReduce 框架相比变化较大,核心的配置文件中很多项在新框架中已经废弃,而新框架中新增了很多其他配置项,看下表所示会更加清晰:
表 2. 新旧 Hadoop 框架配置项变化表
配置文件 | 配置项 | Hadoop 0.20.X 配置 | Hadoop 0.23.X 配置 | 说明 |
core-site.xml | 系统默认分布式文件URI | fs.default.name | fs.defaultFS | |
hdfs-site.xml | DFS name node 存放 name table 的目录 | dfs.name.dir | dfs.namenode.name.dir | 新框架中 name node 分成 dfs.namenode.name.dir( 存放 naname table 和 dfs.namenode.edits.dir(存放 edit 文件),默认是同一个目录 |
| DFS data node 存放数据 block 的目录 | dfs.data.dir | dfs.datanode.data.dir | 新框架中 DataNode 增加更多细节配置,位于 dfs.datanode. 配置项下,如dfs.datanode.data.dir.perm(datanode local 目录默认权限);dfs.datanode.address(datanode 节点监听端口);等 |
| 分布式文件系统数据块复制数 | dfs.replication | dfs.replication | 新框架与老框架一致,值建议配置为与分布式 cluster 中实际的 DataNode 主机数一致 |
mapred-site.xml | Job 监控地址及端口 | mapred.job.tracker | 无 | 新框架中已改为 Yarn-site.xml 中的 resouceManager 及 nodeManager 具体配置项,新框架中历史 job 的查询已从 Job tracker 剥离,归入单独的mapreduce.jobtracker.jobhistory 相关配置, |
| 第三方 MapReduce 框架 | 无 | mapreduce.framework.name | 新框架支持第三方 MapReduce 开发框架以支持如 SmartTalk/DGSG 等非 Yarn 架构,注意通常情况下这个配置的值都设置为 Yarn,如果没有配置这项,那么提交的 Yarn job 只会运行在 locale 模式,而不是分布式模式。 |
Yarn-site.xml | The address of the applications manager interface in the RM | 无 | Yarn.resourcemanager.address | 新框架中 NodeManager 与 RM 通信的接口地址 |
| The address of the scheduler interface | 无 | Yarn.resourcemanager.scheduler.address | 同上,NodeManger 需要知道 RM 主机的 scheduler 调度服务接口地址 |
| The address of the RM web application | 无 | Yarn.resourcemanager.webapp.address | 新框架中各个 task 的资源调度及运行状况通过通过该 web 界面访问 |
| The address of the resource tracker interface | 无 | Yarn.resourcemanager.resource-tracker.address | 新框架中 NodeManager 需要向 RM 报告任务运行状态供 Resouce 跟踪,因此 NodeManager 节点主机需要知道 RM 主机的 tracker 接口地址 |
分享到:
相关推荐
在探讨Hadoop1.x与Hadoop2.x配置的异同之前,我们首先简要回顾一下GridGain In-Memory HDFS的特性,这是基于行业首个高性能双模式内存文件系统,完全兼容HDFS。GridGain FileSystem(GGFS)作为Hadoop HDFS的即插即...
Hadoop 3.x系列是Hadoop的主要版本之一,相比之前的Hadoop 2.x,它引入了诸多改进和优化,提升了整体的存储性能和计算效率。在本文中,我们将深入探讨Hadoop 3.x的关键特性、优化之处以及如何获取和安装这个版本。 ...
文档中提到,与Hadoop 2.x相比,3.x版本在集群安装和配置方面基本变化不大,但具体到新版本的特性以及对默认端口的改变上,还是存在一些需要特别注意的地方。 #### 1. Hadoop 3.x集群安装知识 在集群安装知识部分,...
标题“win32win64hadoop2.7.x.hadoop.dll.bin”暗示了这是一个与Hadoop 2.7.x版本相关的二进制文件,适用于32位和64位的Windows操作系统。描述中提到,这些文件是用于在Windows环境下部署Hadoop时必需的组件,并且在...
### Hadoop2.X 新特性详解 #### Hadoop1.0 的局限性 Hadoop1.0作为初代的大数据处理框架,在数据存储和处理方面取得了显著成就,但也暴露出了一系列问题,主要包括: - **HDFS(Hadoop Distributed File System)...
Hadoop3版本中添加了哪些新功能,Hadoop3中兼容的Hadoop 2程序,Hadoop 2和Hadoop 3有什么区别? 二、Hadoop 2.x与Hadoop 3.x比较 本节将讲述Hadoop 2.x与Hadoop 3.x之间的22个差异。 现在让我们逐一讨论 2.1...
在本场景中,我们有两个针对不同Hadoop版本的配置文件:`hadoop2.9配置文件.rar` 和 `hadoop2.7配置文件.rar`,分别适用于Hadoop 2.9.x和2.7.x版本。 **Hadoop和winutils.exe:** `winutils.exe` 是Hadoop在Windows...
Hadoop 2.x 版本相比早期版本有了显著的改进和增强,特别是在性能、稳定性和安全性方面。 - **Hadoop Common**:这部分为整个Hadoop 提供基础支持和服务,包括一些核心文件系统和I/O库等。 - **Hadoop Distributed ...
本文将详细介绍如何在三节点环境下安装和配置Hadoop 2.x 集群。 一、环境准备 在开始Hadoop的安装前,你需要确保你的硬件环境满足基本需求,包括足够的内存、硬盘空间以及至少三台服务器或虚拟机。每台节点应安装...
【标题】"hadoop3.x带snappy(可用于windows本地开发)"所涉及的知识点主要集中在Hadoop 3.0版本以及Snappy压缩算法在Windows环境下的应用。Hadoop是一个开源的大数据处理框架,由Apache软件基金会开发,它使得在...
1. **Hadoop 2.x 平台基础:** - Hadoop 2.x 的架构原理及组件介绍(如HDFS、YARN等)。 - Hadoop 集群的搭建与管理。 - MapReduce 工作原理及实践应用。 2. **SQL on Hadoop 应用:** - Hive 的安装配置与使用...
Hadoop 2.x 是该框架的一个重要版本,引入了许多改进和优化,使得它更加适合企业级的大数据处理需求。本教程将详细讲解Apache Hadoop 2.x的安装过程,帮助初学者快速入门。 一、Hadoop的体系结构 Hadoop的核心由两...
包含了hadoop配置文件core-site.xml、hdfs-site.xml、mapred-site.xml、yarn-site.xml
在2.x版本的Hadoop中,这些组件经历了多次优化和改进,以提高性能、稳定性和兼容性。例如,Hadoop 2.x引入了YARN(Yet Another Resource Negotiator),这是一个资源管理系统,负责集群资源的分配和管理,使得Hadoop...
Hadoop 是一个基于分布式存储的大数据处理框架,本文档将详细介绍 Hadoop 3.x 的配置和底层原理,从零搭建集群以及解决遇到的问题,通过图形化的方式更好地理解 Hadoop 的作用。 一、HDFS 组成 HDFS(Hadoop ...
通过上述步骤,我们完成了Hadoop 2.x集群的基本搭建和配置。这包括了环境准备、软件部署、HDFS配置以及核心配置文件的设置等关键环节。这些配置能够保证Hadoop集群具备高可用性、良好的容错能力和高效的性能表现,...
本教程将深入探讨如何在单节点环境中部署Hadoop 2.x版本,这对于初学者理解和测试Hadoop功能非常有帮助。我们将关注四个关键配置文件——core-site.xml、yarn-site.xml、hdfs-site.xml和mapred-site.xml,它们是...
10. **Hadoop 2.x的改进**:相比Hadoop 1.x,2.x版本提升了性能,支持更细粒度的资源管理和更好的故障恢复机制。 了解以上知识点后,将提供的压缩包解压到`/etc/hadoop`目录下,根据具体的硬件和需求调整配置文件,...