`
longzhun
  • 浏览: 371638 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

java移位运算

 
阅读更多

复习:

二进制转10进制  :要从右(低位)到左(高位)用二进制的每个数去乘以2的相应次方

11001 = 1*20+0*21+0*22+1*23+1*24 =1+0+0+8+16 =25

10进制转2进制:

25 

25/2=12  余数1

12/2=6    余数0

6/2=3      余数0

3/2=1      余数1

1/2=0      余数1

 

倒着数  11001

 

总结<<,>>,>>>

<<左移运算:3<<2   3左移2位=3*2的2次方=12  (运算过程下面有详细介绍)

左移就是往高位移动,高位舍弃,低位补0  

>>有符号右移:12>>2  12右移2位=12/2的2次方=3

12=0000 0000 0000 0000 0000 0000 0000 1100

>>2 = 0000 0000 0000 0000 0000 0000 0000 0011

低位舍弃,正数高位补0,负数补1

-1 >> 4

 对于有符号整型数的简单认识就是,最高位为符号位,0为正,1为负,那么剩下几位应该如何表示呢?理所当然的认为,既然是1表示为0000 0001(假设为8位整型数,下同),那么-1就应该表示为1000 0001了。

 

 

 

 

移位运算符就是在二进制的基础上对数字进行平移。按照平移的方向和填充数字的规则分为三种:<<(左移)、>>(带符号右移)和>>>(无符号右移)。
  在移位运算时,byte、short和char类型移位后的结果会变成int类型,对于byte、short、char和int进行移位时,规定实际移动的次数是移动次数和32的余数,也就是移位33次和移位1次得到的结果相同。移动long型的数值时,规定实际移动的次数是移动次数和64的余数,也就是移动66次和移动2次得到的结果相同。
  三种移位运算符的移动规则和使用如下所示:
  <<运算规则:按二进制形式把所有的数字向左移动对应的位数,高位移出(舍弃),低位的空位补零。
  语法格式:
  需要移位的数字 << 移位的次数
  例如: 3 << 2,则是将数字3左移2位
  计算过程:
  3 << 2
  首先把3转换为二进制数字0000 0000 0000 0000 0000 0000 0000 0011,然后把该数字高位(左侧)的两个零移出,其他的数字都朝左平移2位,最后在低位(右侧)的两个空位补零。则得到的最终结果是0000 0000 0000 0000 0000 0000 0000 1100,则转换为十进制是12.数学意义:
  在数字没有溢出的前提下,对于正数和负数,左移一位都相当于乘以2的1次方,左移n位就相当于乘以2的n次方。
  >>运算规则:按二进制形式把所有的数字向右移动对应巍峨位数,低位移出(舍弃),高位的空位补符号位,即正数补零,负数补1.
  语法格式:
  需要移位的数字 >> 移位的次数
  例如11 >> 2,则是将数字11右移2位
  计算过程:11的二进制形式为:0000 0000 0000 0000 0000 0000 0000 1011,然后把低位的最后两个数字移出,因为该数字是正数,所以在高位补零。则得到的最终结果是0000 0000 0000 0000 0000 0000 0000 0010.转换为十进制是2.数学意义:右移一位相当于除2,右移n位相当于除以2的n次方。
  >>>运算规则:按二进制形式把所有的数字向右移动对应巍峨位数,低位移出(舍弃),高位的空位补零。对于正数来说和带符号右移相同,对于负数来说不同。
  其他结构和>>相似。
  小结
  二进制运算符,包括位运算符和移位运算符,使程序员可以在二进制基础上操作数字,可以更有效的进行运算,并且可以以二进制的形式存储和转换数据,是实现网络协议解析以及加密等算法的基础。
  实例操作:
  public class URShift {
  public static void main(String[] args) {
  int i = -1;
  i >>>= 10;
  //System.out.println(i);
  mTest();
  }
  public static void mTest(){
  //左移
  int i = 12; //二进制为:0000000000000000000000000001100
  i <<= 2; //i左移2位,把高位的两位数字(左侧开始)抛弃,低位的空位补0,二进制码就为0000000000000000000000000110000
  System.out.println(i); //二进制110000值为48;
  System.out.println("<br>");
  //右移
  i >>=2; //i右移2为,把低位的两个数字(右侧开始)抛弃,高位整数补0,负数补1,二进制码就为0000000000000000000000000001100
  System.out.println(i); //二进制码为1100值为12
  System.out.println("<br>");
  //右移example
  int j = 11;//二进制码为00000000000000000000000000001011
  j >>= 2; //右移两位,抛弃最后两位,整数补0,二进制码为:00000000000000000000000000000010
  System.out.println(j); //二进制码为10值为2
  System.out.println("<br>");
  byte k = -2; //转为int,二进制码为:0000000000000000000000000000010
  k >>= 2; //右移2位,抛弃最后2位,负数补1,二进制吗为:11000000000000000000000000000
  System.out.println(j); //二进制吗为11值为2
  }
  }
  在Thinking in Java第三章中的一段话:
  移位运算符面向的运算对象也是
  二进制的“位”。 可单独用它们处理整数类型(主类型的一种)。左移位运算符(<<)能将运算符左边的运算对象向左移动运算符右侧指定的位数(在低位补0)。 “有符号”右移位运算符(>>)则将运算符左边的运算对象向右移动运算符右侧指定的位数。“有符号”右移位运算符使用了“符号扩展”:若值为正,则在高位插入0;若值为负,则在高位插入1。Java也添加了一种“无符号”右移位运算符(>>>),它使用了“零扩展”:无论正负,都在高位插入0。这一运算符是C或C++没有的。
  若对char,byte或者short进行移位处理,那么在移位进行之前,它们会自动转换成一个int。只有右侧的5个低位才会用到。这样可防止我们在一个int数里移动不切实际的位数。若对一个long值进行处理,最后得到的结果也 是long。此时只会用到右侧的6个低位,防止移动超过long值里现成的位数。但在进行“无符号”右移位时,也可能遇到一个问题。若对byte或 short值进行右移位运算,得到的可能不是正确的结果(Java 1.0和Java 1.1特别突出)。它们会自动转换成int类型,并进行右移位。但“零扩展”不会发生,所以在那些情况下会得到-1的结果。   

 

-----------

 

Java 定义的位运算(bitwise operators )直接对整数类型的位进行操作,这些整数类型包括long,int,short,char,and byte 。表4-2 列出了位运算: 
表4.2 位运算符及其结果 

运算符 结果 
~ 按位非(NOT)(一元运算) 
& 按位与(AND) 
| 按位或(OR) 
^ 按位异或(XOR) 
>> 右移 
>>> 右移,左边空出的位以0填充 
运算符 结果 
<< 左移 
&= 按位与赋值 
|= 按位或赋值 
^= 按位异或赋值 
>>= 右移赋值 
>>>= 右移赋值,左边空出的位以0填充 
<<= 左移赋值 

续表 

既然位运算符在整数范围内对位操作,因此理解这样的操作会对一个值产生什么效果是重要的。具体地说,知道Java 是如何存储整数值并且如何表示负数的是有用的。因此,在继续讨论之前,让我们简短概述一下这两个话题。 

所有的整数类型以二进制数字位的变化及其宽度来表示。例如,byte 型值42的二进制代码是00101010 ,其中每个位置在此代表2的次方,在最右边的位以20开始。向左下一个位置将是21,或2,依次向左是22,或4,然后是8,16,32等等,依此类推。因此42在其位置1,3,5的值为1(从右边以0开始数);这样42是21+23+25的和,也即是2+8+32 。 

所有的整数类型(除了char 类型之外)都是有符号的整数。这意味着他们既能表示正数,又能表示负数。Java 使用大家知道的2的补码(two’s complement )这种编码来表示负数,也就是通过将与其对应的正数的二进制代码取反(即将1变成0,将0变成1),然后对其结果加1。例如,-42就是通过将42的二进制代码的各个位取反,即对00101010 取反得到11010101 ,然后再加1,得到11010110 ,即-42 。要对一个负数解码,首先对其所有的位取反,然后加1。例如-42,或11010110 取反后为00101001 ,或41,然后加1,这样就得到了42。 

如果考虑到零的交叉(zero crossing )问题,你就容易理解Java (以及其他绝大多数语言)这样用2的补码的原因。假定byte 类型的值零用00000000 代表。它的补码是仅仅将它的每一位取反,即生成11111111 ,它代表负零。但问题是负零在整数数学中是无效的。为了解决负零的问题,在使用2的补码代表负数的值时,对其值加1。即负零11111111 加1后为100000000 。但这样使1位太靠左而不适合返回到byte 类型的值,因此人们规定,-0和0的表示方法一样,-1的解码为11111111 。尽管我们在这个例子使用了byte 类型的值,但同样的基本的原则也适用于所有Java 的整数类型。 

因为Java 使用2的补码来存储负数,并且因为Java 中的所有整数都是有符号的,这样应用位运算符可以容易地达到意想不到的结果。例如,不管你如何打算,Java 用高位来代表负数。为避免这个讨厌的意外,请记住不管高位的顺序如何,它决定一个整数的符号。 

4.2.1 位逻辑运算符 
位逻辑运算符有“与”(AND)、“或”(OR)、“异或(XOR )”、“非(NOT)”,分别用“&”、“|”、“^”、“~”表示,4-3 表显示了每个位逻辑运算的结果。在继续讨论之前,请记住位运算符应用于每个运算数内的每个单独的位。 
表4-3 位逻辑运算符的结果 
A 0 1 0 1 B 0 0 1 1 A | B 0 1 1 1 A & B 0 0 0 1 A ^ B 0 1 1 0 ~A 1 0 1 0 

按位非(NOT) 

按位非也叫做补,一元运算符NOT“~”是对其运算数的每一位取反。例如,数字42,它的二进制代码为: 

00101010 

经过按位非运算成为 

11010101 

按位与(AND) 

按位与运算符“&”,如果两个运算数都是1,则结果为1。其他情况下,结果均为零。看下面的例子: 

00101010 42 &00001111 15 

00001010 10 

按位或(OR) 

按位或运算符“|”,任何一个运算数为1,则结果为1。如下面的例子所示: 

00101010 42 | 00001111 15 

00101111 47 

按位异或(XOR) 

按位异或运算符“^”,只有在两个比较的位不同时其结果是 1。否则,结果是零。下面的例子显示了“^”运算符的效果。这个例子也表明了XOR 运算符的一个有用的属性。注意第二个运算数有数字1的位,42对应二进制代码的对应位是如何被转换的。第二个运算数有数字0的位,第一个运算数对应位的数字不变。当对某些类型进行位运算时,你将会看到这个属性的用处。 

00101010 42 ^ 00001111 15 

00100101 37 
位逻辑运算符的应用 

下面的例子说明了位逻辑运算符: 

// Demonstrate the bitwise logical operators. 
class BitLogic { 
public static void main(String args[]) { 


String binary[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111" 

}; 
int a = 3; // 0 + 2 + 1 or 0011 in binary 
int b = 6; // 4 + 2 + 0 or 0110 in binary 
int c = a | b; 
int d = a & b; 
int e = a ^ b; 
int f = (~a & b) | (a & ~b); 
int g = ~a & 0x0f; 


System.out.println(" a = " + binary[a]); 
System.out.println(" b = " + binary[b]); 
System.out.println(" a|b = " + binary[c]); 
System.out.println(" a&b = " + binary[d]); 
System.out.println(" a^b = " + binary[e]); 
System.out.println("~a&b|a&~b = " + binary[f]); 
System.out.println(" ~a = " + binary[g]); 






在本例中,变量a与b对应位的组合代表了二进制数所有的 4 种组合模式:0-0,0-1,1-0 ,和1-1 。“|”运算符和“&”运算符分别对变量a与b各个对应位的运算得到了变量c和变量d的值。对变量e和f的赋值说明了“^”运算符的功能。字符串数组binary 代表了0到15 对应的二进制的值。在本例中,数组各元素的排列顺序显示了变量对应值的二进制代码。数组之所以这样构造是因为变量的值n对应的二进制代码可以被正确的存储在数组对应元素binary[n] 中。例如变量a的值为3,则它的二进制代码对应地存储在数组元素binary[3] 中。~a的值与数字0x0f (对应二进制为0000 1111 )进行按位与运算的目的是减小~a的值,保证变量g的结果小于16。因此该程序的运行结果可以用数组binary 对应的元素来表示。该程序的输出如下: 

a = 0011 b = 0110 a|b = 0111 a&b = 0010 a^b = 0101 ~a&b|a&~b = 0101 ~a = 1100 

4.2.2 左移运算符 
左移运算符<<使指定值的所有位都左移规定的次数。它的通用格式如下所示: 

value << num 
这里,num 指定要移位值value 移动的位数。也就是,左移运算符<<使指定值的所有位都左移num位。每左移一个位,高阶位都被移出(并且丢弃),并用0填充右边。这意味着当左移的运算数是int 类型时,每移动1位它的第31位就要被移出并且丢弃;当左移的运算数是long 类型时,每移动1位它的第63位就要被移出并且丢弃。 

在对byte 和short类型的值进行移位运算时,你必须小心。因为你知道Java 在对表达式求值时,将自动把这些类型扩大为 int 型,而且,表达式的值也是int 型。对byte 和short类型的值进行移位运算的结果是int 型,而且如果左移不超过31位,原来对应各位的值也不会丢弃。但是,如果你对一个负的byte 或者short类型的值进行移位运算,它被扩大为int 型后,它的符号也被扩展。这样,整数值结果的高位就会被1填充。因此,为了得到正确的结果,你就要舍弃得到结果的高位。这样做的最简单办法是将结果转换为byte 型。下面的程序说明了这一点: 

// Left shifting a byte value. 
class ByteShift { 


public static void main(String args[]) { 
byte a = 64, b; 
int i; 


i = a << 2; 
b = (byte) (a << 2); 


System.out.println("Original value of a: " + a); 
System.out.println("i and b: " + i + " " + b); 




该程序产生的输出下所示: 

Original value of a: 64 
i and b: 256 0 


因变量a在赋值表达式中,故被扩大为int 型,64(0100 0000 )被左移两次生成值256 (10000 0000 )被赋给变量i。然而,经过左移后,变量b中惟一的1被移出,低位全部成了0,因此b的值也变成了0。 

既然每次左移都可以使原来的操作数翻倍,程序员们经常使用这个办法来进行快速的2 的乘法。但是你要小心,如果你将1移进高阶位(31或63位),那么该值将变为负值。下面的程序说明了这一点: 

// Left shifting as a quick way to multiply by 2. 
class MultByTwo { 


public static void main(String args[]) { 
int i; 
int num = 0xFFFFFFE; 


for(i=0; i<4; i++) { 
num = num << 1; 
System.out.println(num); 




这里,num 指定要移位值value 移动的位数。也就是,左移运算符<<使指定值的所有位都左移num位。每左移一个位,高阶位都被移出(并且丢弃),并用0填充右边。这意味着当左移的运算数是int 类型时,每移动1位它的第31位就要被移出并且丢弃;当左移的运算数是long 类型时,每移动1位它的第63位就要被移出并且丢弃。 

在对byte 和short类型的值进行移位运算时,你必须小心。因为你知道Java 在对表达式求值时,将自动把这些类型扩大为 int 型,而且,表达式的值也是int 型。对byte 和short类型的值进行移位运算的结果是int 型,而且如果左移不超过31位,原来对应各位的值也不会丢弃。但是,如果你对一个负的byte 或者short类型的值进行移位运算,它被扩大为int 型后,它的符号也被扩展。这样,整数值结果的高位就会被1填充。因此,为了得到正确的结果,你就要舍弃得到结果的高位。这样做的最简单办法是将结果转换为byte 型。下面的程序说明了这一点: 

// Left shifting a byte value. 
class ByteShift { 


public static void main(String args[]) { 
byte a = 64, b; 
int i; 


i = a << 2; 
b = (byte) (a << 2); 


System.out.println("Original value of a: " + a); 
System.out.println("i and b: " + i + " " + b); 




该程序产生的输出下所示: 

Original value of a: 64 
i and b: 256 0 


因变量a在赋值表达式中,故被扩大为int 型,64(0100 0000 )被左移两次生成值256 (10000 0000 )被赋给变量i。然而,经过左移后,变量b中惟一的1被移出,低位全部成了0,因此b的值也变成了0。 

既然每次左移都可以使原来的操作数翻倍,程序员们经常使用这个办法来进行快速的2 的乘法。但是你要小心,如果你将1移进高阶位(31或63位),那么该值将变为负值。下面的程序说明了这一点: 

// Left shifting as a quick way to multiply by 2. 
class MultByTwo { 


public static void main(String args[]) { 
int i; 
int num = 0xFFFFFFE; 


for(i=0; i<4; i++) { 
num = num << 1; 
System.out.println(num); 






该程序的输出如下所示: 

536870908 
1073741816 
2147483632 
-32 


初值经过仔细选择,以便在左移 4 位后,它会产生-32。正如你看到的,当1被移进31 位时,数字被解释为负值。 

4.2.3 右移运算符 
右移运算符>>使指定值的所有位都右移规定的次数。它的通用格式如下所示: 

value >> num 

这里,num 指定要移位值value 移动的位数。也就是,右移运算符>>使指定值的所有位都右移num位。下面的程序片段将值32右移2次,将结果8赋给变量a: 

int a = 32; 
a = a >> 2; // a now contains 8 


当值中的某些位被“移出”时,这些位的值将丢弃。例如,下面的程序片段将35右移2 次,它的2个低位被移出丢弃,也将结果8赋给变量a: 

int a = 35; 
a = a >> 2; // a still contains 8 


用二进制表示该过程可以更清楚地看到程序的运行过程: 

00100011 35 
>> 2 
00001000 8 


将值每右移一次,就相当于将该值除以2并且舍弃了余数。你可以利用这个特点将一个整数进行快速的2的除法。当然,你一定要确保你不会将该数原有的任何一位移出。 

右移时,被移走的最高位(最左边的位)由原来最高位的数字补充。例如,如果要移走的值为负数,每一次右移都在左边补1,如果要移走的值为正数,每一次右移都在左边补0,这叫做符号位扩展(保留符号位)(sign extension ),在进行右移操作时用来保持负数的符号。例如,–8 >> 1 是–4,用二进制表示如下: 

11111000 –8 >>1 11111100 –4 

一个要注意的有趣问题是,由于符号位扩展(保留符号位)每次都会在高位补1,因此-1右移的结果总是–1。有时你不希望在右移时保留符号。例如,下面的例子将一个byte 型的值转换为用十六 
进制表示。注意右移后的值与0x0f进行按位与运算,这样可以舍弃任何的符号位扩展,以便得到的值可以作为定义数组的下标,从而得到对应数组元素代表的十六进制字符。 

// Masking sign extension. 
class HexByte { 
static public void main(String args[]) { 

char hex[] = { 
’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, 
’8’, ’9’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’’ 
}; 
byte b = (byte) 0xf1; 

System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);}} 

该程序的输出如下: 

b = 0xf1 

4.2.4 无符号右移 
正如上面刚刚看到的,每一次右移,>>运算符总是自动地用它的先前最高位的内容补它的最高位。这样做保留了原值的符号。但有时这并不是我们想要的。例如,如果你进行移位操作的运算数不是数字值,你就不希望进行符号位扩展(保留符号位)。当你处理像素值或图形时,这种情况是相当普遍的。在这种情况下,不管运算数的初值是什么,你希望移位后总是在高位(最左边)补0。这就是人们所说的无符号移动(unsigned shift )。这时你可以使用Java 的无符号右移运算符>>> ,它总是在左边补0。 

下面的程序段说明了无符号右移运算符>>> 。在本例中,变量a被赋值为-1,用二进制表示就是32位全是1。这个值然后被无符号右移24位,当然它忽略了符号位扩展,在它的左边总是补0。这样得到的值255被赋给变量a。 

int a = -1; a = a >>> 24; 

下面用二进制形式进一步说明该操作: 

11111111 11111111 11111111 11111111 int型-1的二进制代码>>> 24 无符号右移24位00000000 00000000 00000000 11111111 int型255的二进制代码 

由于无符号右移运算符>>> 只是对32位和64位的值有意义,所以它并不像你想象的那样有用。因为你要记住,在表达式中过小的值总是被自动扩大为int 型。这意味着符号位扩展和移动总是发生在32位而不是8位或16位。这样,对第7位以0开始的byte 型的值进行无符号移动是不可能的,因为在实际移动运算时,是对扩大后的32位值进行操作。下面的例子说明了这一点: 

// Unsigned shifting a byte value. 
class ByteUShift { 
static public void main(String args[]) { 
进制表示。注意右移后的值与0x0f进行按位与运算,这样可以舍弃任何的符号位扩展,以便得到的值可以作为定义数组的下标,从而得到对应数组元素代表的十六进制字符。 
// Masking sign extension. 
class HexByte { 
static public void main(String args[]) { 

char hex[] = { 
’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, 
’8’, ’9’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’’ 
}; 
byte b = (byte) 0xf1; 

System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);}} 

该程序的输出如下: 

b = 0xf1 

4.2.4 无符号右移 
正如上面刚刚看到的,每一次右移,>>运算符总是自动地用它的先前最高位的内容补它的最高位。这样做保留了原值的符号。但有时这并不是我们想要的。例如,如果你进行移位操作的运算数不是数字值,你就不希望进行符号位扩展(保留符号位)。当你处理像素值或图形时,这种情况是相当普遍的。在这种情况下,不管运算数的初值是什么,你希望移位后总是在高位(最左边)补0。这就是人们所说的无符号移动(unsigned shift )。这时你可以使用Java 的无符号右移运算符>>> ,它总是在左边补0。 

下面的程序段说明了无符号右移运算符>>> 。在本例中,变量a被赋值为-1,用二进制表示就是32位全是1。这个值然后被无符号右移24位,当然它忽略了符号位扩展,在它的左边总是补0。这样得到的值255被赋给变量a。 

int a = -1; a = a >>> 24; 

下面用二进制形式进一步说明该操作: 

11111111 11111111 11111111 11111111 int型-1的二进制代码>>> 24 无符号右移24位00000000 00000000 00000000 11111111 int型255的二进制代码 

由于无符号右移运算符>>> 只是对32位和64位的值有意义,所以它并不像你想象的那样有用。因为你要记住,在表达式中过小的值总是被自动扩大为int 型。这意味着符号位扩展和移动总是发生在32位而不是8位或16位。这样,对第7位以0开始的byte 型的值进行无符号移动是不可能的,因为在实际移动运算时,是对扩大后的32位值进行操作。下面的例子说明了这一点: 
// Unsigned shifting a byte value. 
class ByteUShift { 
static public void main(String args[]) { 
int b = 2; 
int c = 3; 

a |= 4; 
b >>= 1; 
c <<= 1; 
a ^= c; 
System.out.println("a = " + a); 
System.out.println("b = " + b); 
System.out.println("c = " + c); 



该程序的输出如下所示: 

a = 3 
b = 1 
c = 6 
分享到:
评论

相关推荐

    Java移位运算

    ### Java移位运算详解 #### 一、基本概念与数据类型范围 在深入探讨Java中的移位运算之前,我们先来了解一下基本的数据类型及其范围。 ##### 1. 基本类型取值范围 Java中提供了多种基本数据类型,如`byte`、`...

    JAVA基础之java的移位运算

    Java的移位运算涉及到整数类型数据的二进制位操作,这对于理解计算机底层运作和优化代码至关重要。移位运算主要包括左移运算符()和右移运算符(&gt;&gt;,&gt;&gt;&gt;)。在Java中,所有的整数类型(除了char类型外)都是有符号...

    java 移位运算符的资源

    而Java.jpg可能是一个与课程或教程相关的图片,展示了一些移位运算的例子或图解,帮助学习者更好地理解这一概念。 总的来说,Java的移位运算符是编程中不可或缺的工具,它们提供了对二进制位的直接控制,能够实现...

    Java利用移位运算将int型分解成四个byte型的方法

    "Java利用移位运算将int型分解成四个byte型的方法" 以下是 Java 中利用移位运算将 int 型分解成四个 byte 型的方法相关知识点: 知识点 1:移位运算 在 Java 中,移位运算是指将一个数字移动到特定的位数,以便...

    【IT十八掌徐培成】Java基础第02天-04.运算符-移位运算-逻辑运算.zip

    本资料主要讲解了Java中的运算符,特别是移位运算和逻辑运算,这两部分是理解数据处理和程序控制的关键。 首先,我们来探讨移位运算。Java支持三种类型的移位运算:左移(),右移(&gt;&gt;)和无符号右移(&gt;&gt;&gt;)。左...

    Java中的位运算

    4. **byte和char进行移位运算**:当`byte`和`char`进行移位运算时不会发生错误,并且均按照整型进行计算,当计算结果超出`byte`或是`char`所能表示的范围时则进行相应的转换。 - 示例: ```java public class ...

    java位运算.docx

    Java 位运算是一种底层操作,它直接作用于整数类型的二进制表示,常用于高效地处理数据。在Java中,所有的整数类型(byte, short, int, long)都是以补码形式存储的,其中最高位是符号位,0表示正数,1表示负数。...

    Java 中的位运算

    ### Java中的位运算知识点 #### 一、位运算概述 位运算是计算机科学中的一个基本概念,它直接针对二进制位进行操作。在Java语言中,提供了多种位运算符来处理二进制数据,这对于优化算法性能、提高程序效率等方面...

    java位运算大全.pdf

    示例代码中展示了一些位运算的应用,比如通过位运算符来操作变量的二进制位,演示了逻辑运算符和移位运算符的使用。其中,通过位运算符演示了如何实现加法操作,因为通过位运算可以模拟进位逻辑,进而实现加法。 ...

    java 位运算知识

    Java 位运算是编程语言中的一种底层操作,它允许我们直接对整数类型的数据进行按位操作,包括按位与(&)、按位或(|)、按位异或(^)、按位非(~)以及左移()、右移(&gt;&gt;)和无符号右移&gt;&gt;&gt;。这些操作在处理二进制数据、优化...

    java位运算1.pdf

    - `左移位运算,向左移动指定位数,高位补0。 - `&gt;&gt;`:有符号右移位,向右移动指定位数,根据符号位填充0或1。 - `&gt;&gt;&gt;`:无符号右移位,向右移动指定位数,无论符号,高位均填充0。 3. **示例代码分析** - `...

    Java移位运算符详解实例(小结)

    Java移位运算符详解实例 Java移位运算符是Java语言中的一种基本运算符,用于对二进制数进行位移操作。移位运算符主要包括左移位运算符()、右移位运算符(&gt;&gt;&gt;)和带符号的右移位运算符(&gt;&gt;)。这些运算符可以单独...

    java实现大周期线性反馈移位寄存器

    它首先从`start`字符串中提取出位0、4、10和13,然后通过异或(^)运算生成新的位13(`x13`)。这个异或操作相当于执行了LFSR的线性反馈函数。接着,`start_buffer`用于更新寄存器状态,移除最左边的一位并添加新...

    Java位运算和逻辑运算的区别实例

    在Java编程语言中,位运算和逻辑运算都用于处理布尔值和整数,但它们在实际操作和行为上有着显著的差异。理解这些差异对于优化代码和深入理解计算机底层工作原理至关重要。 首先,我们来看看逻辑运算符。逻辑运算符...

    Java中的位运算符、移位运算详细介绍

    Java中的位运算符和移位运算在编程中有着重要的作用,尤其在处理底层数据和优化代码性能时。这里我们将深入探讨这些概念。 首先,我们来看位运算符。Java提供了四种基本的位运算符: 1. **按位与(&)**:这个...

    文件移位加密与解密

    从给定的文件信息来看,本文档主要涉及的是文件移位加密与解密技术的C语言实现,这是一项基础但非常实用的加密方法,尤其在早期计算机科学领域中占有重要地位。下面,我们将深入探讨这一主题,包括其背景、原理、...

    java中幂指数值的运算代码解析

    本文主要介绍了 Java 中幂指数值的运算代码解析,提供了多种解决方案,涵盖了幂指数值的基本概念、Math.pow 函数的使用、移位运算的应用等方面。 一、幂指数值的概念 在数学中,幂指数值是指一个数的指数次方,如 ...

    Java中的进制与移位运算符

    移位运算在处理位操作、数组索引计算、快速乘除等方面非常有用,但需谨慎使用,因为它们可能会导致数值溢出或丢失符号信息。 了解了这些基础知识后,开发者可以更好地理解和编写涉及二进制和移位运算的代码。在实际...

Global site tag (gtag.js) - Google Analytics