在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显。主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低。Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在。规避错误来更好的运行比解决错误更高效。在查看了一些资料后,总结如下。
1数据倾斜的原因
1.1操作:
关键词 |
情形 |
后果 |
Join |
其中一个表较小, 但是key集中 |
分发到某一个或几个Reduce上的数据远高于平均值 |
大表与大表,但是分桶的判断字段0值或空值过多 |
这些空值都由一个reduce处理,灰常慢 |
|
group by |
group by 维度过小, 某值的数量过多 |
处理某值的reduce灰常耗时 |
Count Distinct |
某特殊值过多 |
处理此特殊值的reduce耗时 |
1.2原因:
1)、key分布不均匀
2)、业务数据本身的特性
3)、建表时考虑不周
4)、某些SQL语句本身就有数据倾斜
1.3表现:
任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。
单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。
2数据倾斜的解决方案
2.1参数调节:
hive.map.aggr=true
Map 端部分聚合,相当于Combiner
hive.groupby.skewindata=true
有数据倾斜的时候进行负载均衡,当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。
2.2 SQL语句调节:
如何Join:
关于驱动表的选取,选用join key分布最均匀的表作为驱动表
做好列裁剪和filter操作,以达到两表做join的时候,数据量相对变小的效果。
大小表Join:
使用map join让小的维度表(1000条以下的记录条数) 先进内存。在map端完成reduce.
大表Join大表:
把空值的key变成一个字符串加上随机数,把倾斜的数据分到不同的reduce上,由于null值关联不上,处理后并不影响最终结果。
count distinct大量相同特殊值
count distinct时,将值为空的情况单独处理,如果是计算count distinct,可以不用处理,直接过滤,在最后结果中加1。如果还有其他计算,需要进行group by,可以先将值为空的记录单独处理,再和其他计算结果进行union。
group by维度过小:
采用sum() group by的方式来替换count(distinct)完成计算。
特殊情况特殊处理:
在业务逻辑优化效果的不大情况下,有些时候是可以将倾斜的数据单独拿出来处理。最后union回去。
3典型的业务场景
3.1空值产生的数据倾斜
场景:如日志中,常会有信息丢失的问题,比如日志中的 user_id,如果取其中的 user_id 和 用户表中的user_id 关联,会碰到数据倾斜的问题。
解决方法1: user_id为空的不参与关联(红色字体为修改后)
select * from log a join users b on a.user_id is not null and a.user_id = b.user_id union all select * from log a where a.user_id is null;
解决方法2 :赋与空值分新的key值
select * from log a left outer join users b on case when a.user_id is null then concat(‘hive’,rand() ) else a.user_id end = b.user_id;
结论:方法2比方法1效率更好,不但io少了,而且作业数也少了。解决方法1中 log读取两次,jobs是2。解决方法2 job数是1 。这个优化适合无效 id (比如 -99 , ’’, null 等) 产生的倾斜问题。把空值的 key 变成一个字符串加上随机数,就能把倾斜的数据分到不同的reduce上 ,解决数据倾斜问题。
3.2不同数据类型关联产生数据倾斜
场景:用户表中user_id字段为int,log表中user_id字段既有string类型也有int类型。当按照user_id进行两个表的Join操作时,默认的Hash操作会按int型的id来进行分配,这样会导致所有string类型id的记录都分配到一个Reducer中。
解决方法:把数字类型转换成字符串类型
select * from users a left outer join logs b on a.usr_id = cast(b.user_id as string)
3.3小表不小不大,怎么用 map join 解决倾斜问题
使用 map join 解决小表(记录数少)关联大表的数据倾斜问题,这个方法使用的频率非常高,但如果小表很大,大到map join会出现bug或异常,这时就需要特别的处理。 以下例子:
select * from log a left outer join users b on a.user_id = b.user_id;
users 表有 600w+ 的记录,把 users 分发到所有的 map 上也是个不小的开销,而且 map join 不支持这么大的小表。如果用普通的 join,又会碰到数据倾斜的问题。
解决方法:
select /*+mapjoin(x)*/* from log a left outer join ( select /*+mapjoin(c)*/d.* from ( select distinct user_id from log ) c join users d on c.user_id = d.user_id ) x on a.user_id = b.user_id;
假如,log里user_id有上百万个,这就又回到原来map join问题。所幸,每日的会员uv不会太多,有交易的会员不会太多,有点击的会员不会太多,有佣金的会员不会太多等等。所以这个方法能解决很多场景下的数据倾斜问题。
4总结
使map的输出数据更均匀的分布到reduce中去,是我们的最终目标。由于Hash算法的局限性,按key Hash会或多或少的造成数据倾斜。大量经验表明数据倾斜的原因是人为的建表疏忽或业务逻辑可以规避的。在此给出较为通用的步骤:
1、采样log表,哪些user_id比较倾斜,得到一个结果表tmp1。由于对计算框架来说,所有的数据过来,他都是不知道数据分布情况的,所以采样是并不可少的。
2、数据的分布符合社会学统计规则,贫富不均。倾斜的key不会太多,就像一个社会的富人不多,奇特的人不多一样。所以tmp1记录数会很少。把tmp1和users做map join生成tmp2,把tmp2读到distribute file cache。这是一个map过程。
3、map读入users和log,假如记录来自log,则检查user_id是否在tmp2里,如果是,输出到本地文件a,否则生成<user_id,value>的key,value对,假如记录来自member,生成<user_id,value>的key,value对,进入reduce阶段。
4、最终把a文件,把Stage3 reduce阶段输出的文件合并起写到hdfs。
如果确认业务需要这样倾斜的逻辑,考虑以下的优化方案:
1、对于join,在判断小表不大于1G的情况下,使用map join
2、对于group by或distinct,设定 hive.groupby.skewindata=true
3、尽量使用上述的SQL语句调节进行优化
相关推荐
Hive查询生成多个map reduce job,一个map reduce job又有map,reduce,spill,shuffle,sort等多个阶段,所以针对hive查询的优化可以大致分为针对MR中单个步骤的优化,针对MR全局的优化以及针对整个查询的优化。...
大数据Hive数据倾斜、Hive-SQL优化 在大数据处理中,Hive是一个非常重要的工具,然而在实际应用中,数据倾斜和性能优化问题经常会出现。为了解决这些问题,我们需要了解Hive的性能调优、数据模型设计、数据倾斜判断...
利用Hive进行复杂用户行为大数据分析及优化案例(全套视频+课件...14_Hive中的数据倾斜及解决方案-三种join方式 15_Hive中的数据倾斜及解决方案-group by 16_Hive中使用正则加载数据 17_Hive中使用Python脚本进行预处理
Hive是基于Hadoop平台的数据仓库解决方案,它主要解决了在大数据场景下,业务人员和数据科学家能够通过熟悉的SQL语言进行数据分析的问题。Hive并不存储数据,而是依赖于HDFS进行数据存储,并利用MapReduce、Tez或...
【大数据系列-Hive】 Hive是Apache软件基金会下的一个数据仓库工具,主要设计用于处理和管理大规模的数据集,尤其在大规模分布式计算环境如Hadoop上。Hive提供了SQL-like的查询语言,称为HQL(Hive Query Language...
Hive是大数据领域中一个重要的数据仓库工具,它设计的目标是为大规模数据集提供数据查询和分析能力。由于Hive提供了类似SQL的查询语言(HQL),使得非Java背景的分析师也能轻松进行大数据处理。下面我们将深入探讨...
在大数据环境下,Hive通过分布式计算模型处理PB级别的数据。其支持SQL查询,使得非编程背景的分析师也能操作大数据。Hive的MapReduce或Tez执行引擎可以并行处理任务,提高处理速度。此外,Hive的分区和桶表策略能...
【大数据虚拟机Linux VM复习题库】主要涵盖了大数据处理、Hadoop生态系统中的Hive以及Linux虚拟机相关的知识。以下是对这些知识点的详细说明: 1. **数据仓库与数据库系统的关系**: 数据仓库是一个用于报告和数据...
在【尚硅谷大数据视频_Hive视频教程.txt】文件中,可能包含了每一课的详细笔记、关键点总结,或者是一些练习题和解答,帮助你巩固所学知识,确保理论与实践相结合。 通过这个视频教程,你不仅能够掌握Hive的基础...
推荐,超全的大数据知识体系总结资料合集,共23份。 最强HiveSQL开发指南 Spark知识体系最强总结 Spark数据倾斜及解决方案 Spark 面试八股文 Linux面试专题及答案 Kafka知识体系最强总结 JVM面试专题及答案 Java...
这份“大数据技术学习笔记之Hive”旨在帮助我们深入理解并掌握Hive的核心概念和技术应用。 一、Hive概述 Hive主要为非结构化或半结构化的海量数据提供数据仓库服务,通过SQL-like查询语言(HQL)进行数据查询,简化...
50.Hive中的数据倾斜及解决方案-三种join方式 51.Hive中的数据倾斜及解决方案-group by 52.Hive中使用正则加载数据 53. Hive中使用Python脚本进行预处理 第5章:Zeus任务资源调度工具 54.资源任务调度框架介绍 55....
《Hive大数据数据库详解》 在大数据处理领域,Hive是一个不可或缺的重要工具,它为海量数据提供了基于SQL的查询和分析能力,使得非技术人员也能轻松处理大数据问题。本笔记将深入探讨Hive的核心概念、架构、操作...
《Hive大数据数据库详解》 在当今大数据时代,Hive作为一个强大的数据分析工具,因其易于使用、灵活的SQL接口以及良好的可扩展性,被广泛应用在海量数据处理领域。本篇文章将深入探讨Hive的核心概念、工作原理及...
【大数据开发+hive优化方法大全+hql优化】 在大数据处理领域,Hive 是一个非常重要的工具,它提供了基于 SQL 的查询语言(HQL)来处理大规模数据集。针对Hive的性能优化,可以从多个方面进行,包括SQL语句优化、...
根据业务需求,可能还需要对Hive表进行性能优化,比如设置合适的压缩编码、分桶或倾斜键等。 这个过程不仅可以节省手动编写建表语句的时间,还可以减少因人为错误导致的问题。对于大型数据仓库项目,这样的自动化...
总的来说,Hive执行计划可视化工具是大数据工程师和管理员的得力助手,它们提供了深入洞察Hive查询执行过程的能力,从而提高数据处理效率并优化集群资源使用。通过熟练掌握这类工具,用户可以更有效地管理和优化他们...
Hadoop作为大数据生态的底层框架,Hive作为建立在Hadoop之上的数据仓库工具,二者在实际应用中都有着非常广泛的应用。淘宝作为国内知名的电商平台,其对Hadoop和Hive的调优以及开发经验具有较高的参考价值。 在对...