`

相似图片搜索的原理

阅读更多
摘要: 2011年,Google把“相似图片搜索”正式放上了首页。你可以用一张图片,搜索互联网上所有与它相似的图片。点击搜索框中照相机的图标。一个对话框会出现。你输入网片的网址,或者直接上传图片,Google就会找出与其相似 ...
 
 
2011年,Google把“相似图片搜索”正式放上了首页。你可以用一张图片,搜索互联网上所有与它相似的图片。点击搜索框中照相机的图标。
一个对话框会出现。
你输入网片的网址,或者直接上传图片,Google就会找出与其相似的图片。下面这张图片是美国女演员Alyson Hannigan。
上传后,Google返回如下结果
类似的”相似图片搜索引擎”还有不少,TinEye甚至可以找出照片的拍摄背景。
这种技术的原理是什么?计算机怎么知道两张图片相似呢?
 
根据Neal Krawetz博士的解释,原理非常简单易懂。我们可以用一个快速算法,就达到基本的效果。
 
这里的关键技术叫做”感知哈希算法”(Perceptual hash algorithm),它的作用是对每张图片生成一个”指纹”(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。
 
下面是一个最简单的实现:
 
第一步,缩小尺寸。
 
将图片缩小到8×8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。
 
第二步,简化色彩。
 
将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。
 
第三步,计算平均值。
 
计算所有64个像素的灰度平均值。
 
第四步,比较像素的灰度。
 
将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。
 
第五步,计算哈希值。
 
将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。
  = 8f373714acfcf4d0
得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算”汉明距离”(Hamming distance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。
 
具体的代码实现,可以参见Wote用python语言写的imgHash.py。代码很短,只有53行。使用的时候,第一个参数是基准图片,第二个参数是用来比较的其他图片所在的目录,返回结果是两张图片之间不相同的数据位数量(汉明距离)。
 
这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。
 
实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。
 
http://science.dataguru.cn/article-7057-1.html
 
 
 
: 我在 isnowfy 的网站看到,还有其他两种方法也很简单,这里做一些笔记。一、颜色分布法每张图片都可以生成颜色分布的直方图(color histogram)。如果两张图片的直方图很接近,就可以认为它们很相似。任何一种颜色都 ...
 
 
我在 isnowfy 的网站看到,还有其他两种方法也很简单,这里做一些笔记。
一、颜色分布法
 
每张图片都可以生成颜色分布的直方图(color histogram)。如果两张图片的直方图很接近,就可以认为它们很相似。
任何一种颜色都是由红绿蓝三原色(RGB)构成的,所以上图共有4张直方图(三原色直方图 + 最后合成的直方图)。
 
如果每种原色都可以取256个值,那么整个颜色空间共有1600万种颜色(256的三次方)。针对这1600万种颜色比较直方图,计算量实在太大了,因此需要采用简化方法。可以将0~255分成四个区:0~63为第0区,64~127为第1区,128~191为第2区,192~255为第3区。这意味着红绿蓝分别有4个区,总共可以构成64种组合(4的3次方)。
 
任何一种颜色必然属于这64种组合中的一种,这样就可以统计每一种组合包含的像素数量。
上图是某张图片的颜色分布表,将表中最后一栏提取出来,组成一个64维向量(7414, 230, 0, 0, 8, …, 109, 0, 0, 3415, 53929)。这个向量就是这张图片的特征值或者叫”指纹”。
 
于是,寻找相似图片就变成了找出与其最相似的向量。这可以用皮尔逊相关系数或者余弦相似度算出。
http://science.dataguru.cn/article-7058-1.html
 
二、内容特征法
 
除了颜色构成,还可以从比较图片内容的相似性入手。
 
首先,将原图转成一张较小的灰度图片,假定为50×50像素。然后,确定一个阈值,将灰度图片转成黑白图片。
  
如果两张图片很相似,它们的黑白轮廓应该是相近的。于是,问题就变成了,第一步如何确定一个合理的阈值,正确呈现照片中的轮廓?
显然,前景色与背景色反差越大,轮廓就越明显。这意味着,如果我们找到一个值,可以使得前景色和背景色各自的”类内差异最小”(minimizing the intra-class variance),或者”类间差异最大”(maximizing the inter-class variance),那么这个值就是理想的阈值。
 
1979年,日本学者大津展之证明了,”类内差异最小”与”类间差异最大”是同一件事,即对应同一个阈值。他提出一种简单的算法,可以求出这个阈值,这被称为”大津法”(Otsu’s method)。下面就是他的计算方法。
 
假定一张图片共有n个像素,其中灰度值小于阈值的像素为 n1 个,大于等于阈值的像素为 n2 个( n1 + n2 = n )。w1 和 w2 表示这两种像素各自的比重。
 
w1 = n1 / n
w2 = n2 / n
 
再假定,所有灰度值小于阈值的像素的平均值和方差分别为 μ1 和 σ1,所有灰度值大于等于阈值的像素的平均值和方差分别为 μ2 和 σ2。于是,可以得到
 
类内差异 = w1(σ1的平方) + w2(σ2的平方)
类间差异 = w1w2(μ1-μ2)^2
 
可以证明,这两个式子是等价的:得到”类内差异”的最小值,等同于得到”类间差异”的最大值。不过,从计算难度看,后者的计算要容易一些。
下一步用”穷举法”,将阈值从灰度的最低值到最高值,依次取一遍,分别代入上面的算式。使得”类内差异最小”或”类间差异最大”的那个值,就是最终的阈值。具体的实例和Java算法,请看这里
有了50×50像素的黑白缩略图,就等于有了一个50×50的0-1矩阵。矩阵的每个值对应原图的一个像素,0表示黑色,1表示白色。这个矩阵就是一张图片的特征矩阵。
 
两个特征矩阵的不同之处越少,就代表两张图片越相似。这可以用”异或运算”实现(即两个值之中只有一个为1,则运算结果为1,否则运算结果为0)。对不同图片的特征矩阵进行”异或运算”,结果中的1越少,就是越相似的图片。
分享到:
评论

相关推荐

    pendulum-2.1.2-cp39-cp39-win32.whl.rar

    python whl离线安装包 pip安装失败可以尝试使用whl离线安装包安装 第一步 下载whl文件,注意需要与python版本配套 python版本号、32位64位、arm或amd64均有区别 第二步 使用pip install XXXXX.whl 命令安装,如果whl路径不在cmd窗口当前目录下,需要带上路径 WHL文件是以Wheel格式保存的Python安装包, Wheel是Python发行版的标准内置包格式。 在本质上是一个压缩包,WHL文件中包含了Python安装的py文件和元数据,以及经过编译的pyd文件, 这样就使得它可以在不具备编译环境的条件下,安装适合自己python版本的库文件。 如果要查看WHL文件的内容,可以把.whl后缀名改成.zip,使用解压软件(如WinRAR、WinZIP)解压打开即可查看。 为什么会用到whl文件来安装python库文件呢? 在python的使用过程中,我们免不了要经常通过pip来安装自己所需要的包, 大部分的包基本都能正常安装,但是总会遇到有那么一些包因为各种各样的问题导致安装不了的。 这时我们就可以通过尝试去Python安装包大全中(whl包下载)下载whl包来安装解决问题。

    Nginx配置文件中FastCGI相关参数理解

    Nginx配置文件中FastCGI相关参数理解

    Pillow-8.4.0-cp310-cp310-win32.whl.rar

    python whl离线安装包 pip安装失败可以尝试使用whl离线安装包安装 第一步 下载whl文件,注意需要与python版本配套 python版本号、32位64位、arm或amd64均有区别 第二步 使用pip install XXXXX.whl 命令安装,如果whl路径不在cmd窗口当前目录下,需要带上路径 WHL文件是以Wheel格式保存的Python安装包, Wheel是Python发行版的标准内置包格式。 在本质上是一个压缩包,WHL文件中包含了Python安装的py文件和元数据,以及经过编译的pyd文件, 这样就使得它可以在不具备编译环境的条件下,安装适合自己python版本的库文件。 如果要查看WHL文件的内容,可以把.whl后缀名改成.zip,使用解压软件(如WinRAR、WinZIP)解压打开即可查看。 为什么会用到whl文件来安装python库文件呢? 在python的使用过程中,我们免不了要经常通过pip来安装自己所需要的包, 大部分的包基本都能正常安装,但是总会遇到有那么一些包因为各种各样的问题导致安装不了的。 这时我们就可以通过尝试去Python安装包大全中(whl包下载)下载whl包来安装解决问题。

    yolo算法-刹车灯探测器数据集-1070张图像带标签-交通信号灯.zip

    yolo系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值

    pocketsphinx-0.1.15-cp36-cp36m-win32.whl.rar

    python whl离线安装包 pip安装失败可以尝试使用whl离线安装包安装 第一步 下载whl文件,注意需要与python版本配套 python版本号、32位64位、arm或amd64均有区别 第二步 使用pip install XXXXX.whl 命令安装,如果whl路径不在cmd窗口当前目录下,需要带上路径 WHL文件是以Wheel格式保存的Python安装包, Wheel是Python发行版的标准内置包格式。 在本质上是一个压缩包,WHL文件中包含了Python安装的py文件和元数据,以及经过编译的pyd文件, 这样就使得它可以在不具备编译环境的条件下,安装适合自己python版本的库文件。 如果要查看WHL文件的内容,可以把.whl后缀名改成.zip,使用解压软件(如WinRAR、WinZIP)解压打开即可查看。 为什么会用到whl文件来安装python库文件呢? 在python的使用过程中,我们免不了要经常通过pip来安装自己所需要的包, 大部分的包基本都能正常安装,但是总会遇到有那么一些包因为各种各样的问题导致安装不了的。 这时我们就可以通过尝试去Python安装包大全中(whl包下载)下载whl包来安装解决问题。

    NI-VISA资源安装包

    Windows下2024Q4版本

    【java毕业设计】网上电子书店源码(ssm+mysql+说明文档+LW).zip

    功能说明: (a) 管理员;管理员使用本系统涉到的功能主要有主页、个人中心、用户管理、一级分类管理、二级分类管理、电子书管理、下单购买管理、我的书籍管理、留言反馈、系统管理等功能。 (b) 用户;用户进入系统可以实现首页、电子书、通知公告、留言反馈、个人中心、后台管理、在线客服等,登录注册后可以对主页、个人中心、下单购买管理、我的书籍管理、留言反馈等功能进行详细操作。 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7及以上 数据库工具:Navicat11及以上 开发软件:eclipse/idea Maven包:Maven3.3及以上 服务器:tomcat7及以上

    【java毕业设计】网上点餐系统源码(ssm+mysql+说明文档).zip

    环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7及以上 数据库工具:Navicat11及以上 开发软件:eclipse/idea Maven包:Maven3.3及以上 服务器:tomcat7及以上

    pocketsphinx-0.1.15-cp39-cp39-win_amd64.whl.rar

    python whl离线安装包 pip安装失败可以尝试使用whl离线安装包安装 第一步 下载whl文件,注意需要与python版本配套 python版本号、32位64位、arm或amd64均有区别 第二步 使用pip install XXXXX.whl 命令安装,如果whl路径不在cmd窗口当前目录下,需要带上路径 WHL文件是以Wheel格式保存的Python安装包, Wheel是Python发行版的标准内置包格式。 在本质上是一个压缩包,WHL文件中包含了Python安装的py文件和元数据,以及经过编译的pyd文件, 这样就使得它可以在不具备编译环境的条件下,安装适合自己python版本的库文件。 如果要查看WHL文件的内容,可以把.whl后缀名改成.zip,使用解压软件(如WinRAR、WinZIP)解压打开即可查看。 为什么会用到whl文件来安装python库文件呢? 在python的使用过程中,我们免不了要经常通过pip来安装自己所需要的包, 大部分的包基本都能正常安装,但是总会遇到有那么一些包因为各种各样的问题导致安装不了的。 这时我们就可以通过尝试去Python安装包大全中(whl包下载)下载whl包来安装解决问题。

    cn-visual-studio-2010-ultimate-x86-dvd-532347.z01

    cn-visual-studio-2010-ultimate-x86-dvd-532347.z01

    智慧城市照明智能管理系统解决方案PPT(27页).pptx

    城市运行管理的重要性与挑战 城市运行体系是以人为本的服务和经济发展体系,涉及决策、管理和执行三个层次。当前城市运行管理面临城市化快速发展、资源环境制约和社会矛盾突出等挑战。信息技术的发展为城市运行管理提供了重要手段,城市信息化经历了数字化、智能化到智慧化的发展过程。我国城市信息化虽取得进展,但仍处于初级阶段,存在缺乏整体规划、资源浪费和协作效率不高等问题。 智慧城市综合运行管理解决方案 智慧城市运行管理中心(SCOC)是支撑城市运行综合管理的神经中枢,旨在掌控城市运行综合体征,促进服务型政府转型。该中心通过全面整合运行资源,服务城市未来发展,提升城市运行水平和突发事件处置效率。中心纵向提升综合职能,横向贯通专业分工,包括综合管理平台、专业管理平台和业务操作平台,覆盖城市交通、公共安全、生态环境等多个领域。 智慧城市综合运行管理平台的结构与功能 智慧城市综合运行管理平台包括决策支持系统、处置系统、基础设施和监测系统。平台通过综合展现系统、综合应急指挥系统、综合运行业务联动系统等,实现城市运行的综合监测和管理。物联网数据采集系统利用网络通讯技术,实现城市物联网设备的高效运行。平台还包含云计算业务支撑系统、城市基础数据库、视频图像云平台等,以支持城市运行管理的各个方面。 智慧城市综合运行管理解决方案的优势 该解决方案具有三个核心优势:首先,它提供了完整的智慧城市视角,不仅仅是指挥中心或数据中心,而是智慧城市的实际载体。其次,它建立了完整的城市运行联动体系,打通业务部门壁垒,形成有机融合的业务联动平台,提升业务处理效率和服务水平。最后,方案凝聚了多年智慧城市建设咨询经验,为城市运行管理提供了成熟的解决方案。 项目实施建议 智慧城市运行管理中心的建设思路和项目实施建议是方案的重要组成部分,旨在指导城市如何有效实施智慧城市运行管理解决方案,以应对城市运行管理的挑战,提升城市管理的智能化和效率。通过这些建议,城市能够更好地规划和实施智慧城市项目,实现可持续发展。

    persistent-4.9.0-cp39-cp39-win32.whl.rar

    python whl离线安装包 pip安装失败可以尝试使用whl离线安装包安装 第一步 下载whl文件,注意需要与python版本配套 python版本号、32位64位、arm或amd64均有区别 第二步 使用pip install XXXXX.whl 命令安装,如果whl路径不在cmd窗口当前目录下,需要带上路径 WHL文件是以Wheel格式保存的Python安装包, Wheel是Python发行版的标准内置包格式。 在本质上是一个压缩包,WHL文件中包含了Python安装的py文件和元数据,以及经过编译的pyd文件, 这样就使得它可以在不具备编译环境的条件下,安装适合自己python版本的库文件。 如果要查看WHL文件的内容,可以把.whl后缀名改成.zip,使用解压软件(如WinRAR、WinZIP)解压打开即可查看。 为什么会用到whl文件来安装python库文件呢? 在python的使用过程中,我们免不了要经常通过pip来安装自己所需要的包, 大部分的包基本都能正常安装,但是总会遇到有那么一些包因为各种各样的问题导致安装不了的。 这时我们就可以通过尝试去Python安装包大全中(whl包下载)下载whl包来安装解决问题。

    pocketsphinx-0.1.15-cp27-cp27m-win_amd64.whl.rar

    python whl离线安装包 pip安装失败可以尝试使用whl离线安装包安装 第一步 下载whl文件,注意需要与python版本配套 python版本号、32位64位、arm或amd64均有区别 第二步 使用pip install XXXXX.whl 命令安装,如果whl路径不在cmd窗口当前目录下,需要带上路径 WHL文件是以Wheel格式保存的Python安装包, Wheel是Python发行版的标准内置包格式。 在本质上是一个压缩包,WHL文件中包含了Python安装的py文件和元数据,以及经过编译的pyd文件, 这样就使得它可以在不具备编译环境的条件下,安装适合自己python版本的库文件。 如果要查看WHL文件的内容,可以把.whl后缀名改成.zip,使用解压软件(如WinRAR、WinZIP)解压打开即可查看。 为什么会用到whl文件来安装python库文件呢? 在python的使用过程中,我们免不了要经常通过pip来安装自己所需要的包, 大部分的包基本都能正常安装,但是总会遇到有那么一些包因为各种各样的问题导致安装不了的。 这时我们就可以通过尝试去Python安装包大全中(whl包下载)下载whl包来安装解决问题。

    域外渗透域内思路:使用工具与技术进行域内侦察与暴力破解

    内容概要:本文介绍了一种通过域外渗透手段进入域内网络的技术思路。主要内容涵盖了使用VPN拨入内网,利用nbt.exe、ladon.exe、nmap等工具进行网络扫描,查找域控制器,以及使用bash和PowerShell脚本进行域用户口令暴力破解的方法。同时介绍了几种常用工具如ldapsearch、PowerView和PingCastle的使用方法,以及它们在获取域内信息方面的具体应用场景。 适合人群:网络安全专业人员、红队成员、渗透测试工程师等从事信息安全相关工作的技术人员。 使用场景及目标:帮助安全专家在进行渗透测试时有效地获取域内网络的关键信息,评估域的安全性,识别潜在的安全漏洞,并提出改进建议。 其他说明:文章提供了详细的命令示例和配置指南,适用于Windows和Linux环境,同时也提到了一些需要注意的安全事项,如防止触发安全警报等。

    Vue搭建AudioPlaySation(三)

    Vue搭建AudioPlaySation(三)

    yolo算法-石头剪刀数据集-7331张图像带标签.zip

    yolo系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值

    psf-2021.6.6-cp37-cp37m-win32.whl.rar

    python whl离线安装包 pip安装失败可以尝试使用whl离线安装包安装 第一步 下载whl文件,注意需要与python版本配套 python版本号、32位64位、arm或amd64均有区别 第二步 使用pip install XXXXX.whl 命令安装,如果whl路径不在cmd窗口当前目录下,需要带上路径 WHL文件是以Wheel格式保存的Python安装包, Wheel是Python发行版的标准内置包格式。 在本质上是一个压缩包,WHL文件中包含了Python安装的py文件和元数据,以及经过编译的pyd文件, 这样就使得它可以在不具备编译环境的条件下,安装适合自己python版本的库文件。 如果要查看WHL文件的内容,可以把.whl后缀名改成.zip,使用解压软件(如WinRAR、WinZIP)解压打开即可查看。 为什么会用到whl文件来安装python库文件呢? 在python的使用过程中,我们免不了要经常通过pip来安装自己所需要的包, 大部分的包基本都能正常安装,但是总会遇到有那么一些包因为各种各样的问题导致安装不了的。 这时我们就可以通过尝试去Python安装包大全中(whl包下载)下载whl包来安装解决问题。

    【java毕业设计】古诗词数字化平台源码(ssm+mysql+说明文档+LW).zip

    功能说明: 古诗词数字化平台的功能已基本实现,主要实现主页、个人中心、用户管理、诗词信息管理、分类管理、诗人信息管理、个人分享管理、系统管理等功能的操作系统。 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7及以上 数据库工具:Navicat11及以上 开发软件:eclipse/idea Maven包:Maven3.3及以上 服务器:tomcat7及以上

    YOLO格式下的行人识别数据集

    这个文档中包含了行人数据集约四千张,在train文件中就包含了三千多张数据集。工具是使用了Labelimg进行标注。

    中介与调节效应分析素材-精心整理资料.zip

    中介与调节效应分析素材-精心整理资料.zip

Global site tag (gtag.js) - Google Analytics