平时的开发中线程是个少不了的东西,比如tomcat里的servlet就是线程,没有线程我们如何提供多用户访问呢?不过很多刚开始接触线程的开发攻城师却在这个上面吃了不少苦头。怎么做一套简便的线程开发模式框架让大家从单线程开发快速转入多线程开发,这确实是个比较难搞的工程。
那具体什么是线程呢?首先看看进程是什么,进程就是系统中执行的一个程序,这个程序可以使用内存、处理器、文件系统等相关资源。例如 QQ软件、eclipse、tomcat等就是一个exe程序,运行启动起来就是一个进程。为什么需要多线程?如果每个进程都是单独处理一件事情不能多个任务同时处理,比如我们打开qq只能和一个人聊天,我们用eclipse开发代码的时候不能编译代码,我们请求tomcat服务时只能服务一个用户请求,那我想我们还在原始社会。多线程的目的就是让一个进程能够同时处理多件事情或者请求。比如现在我们使用的QQ软件可以同时和多个人聊天,我们用eclipse开发代码时还可以编译代码,tomcat可以同时服务多个用户请求。
线程这么多好处,怎么把单进程程序变成多线程程序呢?不同的语言有不同的实现,这里说下java语言的实现多线程的两种方式:扩展java.lang.Thread类、实现java.lang.Runnable接口。
先看个例子,假设有100个数据需要分发并且计算。看下单线程的处理速度:
import java.util.Vector;
public class OneMain {
public static void main(String[] args) throws InterruptedException {
Vector<Integer> list = new Vector<Integer>(100);
for (int i = 0; i < 100; i++) {
list.add(i);
}
long start = System.currentTimeMillis();
while (list.size() > 0) {
int val = list.remove(0);
Thread. sleep(100);//模拟处理
System. out.println(val);
}
long end = System.currentTimeMillis();
System. out.println("消耗 " + (end - start) + " ms");
}
// 消耗 10063 ms
}
再看一下多线程的处理速度,采用了10个线程分别处理:
import java.util.Vector;
import java.util.concurrent.CountDownLatch;
public class MultiThread extends Thread {
static Vector<Integer> list = new Vector<Integer>(100);
static CountDownLatch count = new CountDownLatch(10);
public void run() {
while (list.size() > 0) {
try {
int val = list.remove(0);
System.out.println(val);
Thread.sleep(100);//模拟处理
} catch (Exception e) {
// 可能数组越界,这个地方只是为了说明问题,忽略错误
}
}
count.countDown(); // 删除成功减一
}
public static void main(String[] args) throws InterruptedException {
for (int i = 0; i < 100; i++) {
list.add(i);
}
long start = System.currentTimeMillis();
for (int i = 0; i < 10; i++) {
new MultiThread().start();
}
count.await();
long end = System.currentTimeMillis();
System.out.println("消耗 " + (end - start) + " ms");
}
// 消耗 1001 ms
}
大家看到了线程的好处了吧!单线程需要10S,10个线程只需要1S。充分利用了系统资源实现并行计算。也许这里会产生一个误解,是不是增加的线程个数越多效率越高。线程越多处理性能越高这个是错误的,范式都要合适,过了就不好了。需要普及一下计算机硬件的一些知识。我们的cpu是个运算器,线程执行就需要这个运算器来运行。不过这个资源只有一个,大家就会争抢。一般通过以下几种算法实现争抢cpu的调度:
1、队列方式,先来先服务。不管是什么任务来了都要按照队列排队先来后到。
2、时间片轮转,这也是最古老的cpu调度算法。设定一个时间片,每个任务使用cpu的时间不能超过这个时间。如果超过了这个时间就把任务暂停保存状态,放到队列尾部继续等待执行。
3、优先级方式:给任务设定优先级,有优先级的先执行,没有优先级的就等待执行。
这三种算法都有优缺点,实际操作系统是结合多种算法,保证优先级的能够先处理,但是也不能一直处理优先级的任务。硬件方面为了提高效率也有多核cpu、多线程cpu等解决方案。目前看得出来线程增多了会带来cpu调度的负载增加,cpu需要调度大量的线程,包括创建线程、销毁线程、线程是否需要换出cpu、是否需要分配到cpu。这些都是需要消耗系统资源的,由此,我们需要一个机制来统一管理这一堆线程资源。线程池的理念提出解决了频繁创建、销毁线程的代价。线程池指预先创建好一定大小的线程等待随时服务用户的任务处理,不必等到用户需要的时候再去创建。特别是在java开发中,尽量减少垃圾回收机制的消耗就要减少对象的频繁创建和销毁。
之前我们都是自己实现的线程池,不过随之jdk1.5的推出,jdk自带了 java.util.concurrent并发开发框架,解决了我们大部分线程池框架的重复工作。可以使用Executors来建立线程池,列出以下大概的,后面再介绍。
newCachedThreadPool 建立具有缓存功能线程池
newFixedThreadPool 建立固定数量的线程
newScheduledThreadPool 建立具有时间调度的线程
有了线程池后有以下几个问题需要考虑:
1、线程怎么管理,比如新建任务线程。
2、线程如何停止、启动。
3、线程除了scheduled模式的间隔时间定时外能否实现精确时间启动。比如晚上1点启动。
4、线程如何监控,如果线程执行过程中死掉了,异常终止我们怎么知道。
考虑到这几点,我们需要把线程集中管理起来,用java.util.concurrent是做不到的。需要做以下几点:
1、将线程和业务分离,业务的配置单独做成一个表。
2、构建基于concurrent的线程调度框架,包括可以管理线程的状态、停止线程的接口、线程存活心跳机制、线程异常日志记录模块。
3、构建灵活的timer组件,添加quartz定时组件实现精准定时系统。
4、和业务配置信息结合构建线程池任务调度系统。可以通过配置管理、添加线程任务、监控、定时、管理等操作。
组件图为:
构建好线程调度框架是不是就可以应对大量计算的需求了呢?答案是否定的。因为一个机器的资源是有限的,上面也提到了cpu是时间周期的,任务一多了也会排队,就算增加cpu,一个机器能承载的cpu也是有限的。所以需要把整个线程池框架做成分布式的任务调度框架才能应对横向扩展,比如一个机器上的资源呢达到瓶颈了,马上增加一台机器部署调度框架和业务就可以增加计算能力了。好了,如何搭建?如下图:
基于jeeframework我们封装spring、ibatis、数据库等操作,并且可以调用业务方法完成业务处理。主要组件为:
1、任务集中存储到数据库服务器
2、控制中心负责管理集群中的节点状态,任务分发
3、线程池调度集群负责控制中心分发的任务执行
4、web服务器通过可视化操作任务的分派、管理、监控。
一般这个架构可以应对常用的分布式处理需求了,不过有个缺陷就是随着开发人员的增多和业务模型的增多,单线程的编程模型也会变得复杂。比如需要对1000w数据进行分词,如果这个放到一个线程里来执行,不算计算时间消耗光是查询数据库就需要耗费不少时间。有人说,那我把1000w数据打散放到不同机器去运算,然后再合并不就行了吗?因为这是个特例的模式,专为了这个需求去开发相应的程序没有问题,但是以后又有其他的海量需求如何办?比如把倒退3年的所有用户发的帖子中发帖子最多的粉丝转发的最高的用户作息时间取出来。又得编一套程序实现,太麻烦!分布式云计算架构要解决的就是这些问题,减少开发复杂度并且要高性能,大家会不会想到一个最近很热的一个框架,hadoop,没错就是这个玩意。hadoop解决的就是这个问题,把大的计算任务分解、计算、合并,这不就是我们要的东西吗?不过玩过这个的人都知道他是一个单独的进程。不是!他是一堆进程,怎么和我们的调度框架结合起来?看图说话:
基本前面的分布式调度框架组件不变,增加如下组件和功能:
1、改造分布式调度框架,可以把本身线程任务变成mapreduce任务并提交到hadoop集群。
2、hadoop集群能够调用业务接口的spring、ibatis处理业务逻辑访问数据库。
3、hadoop需要的数据能够通过hive查询。
4、hadoop可以访问hdfs/hbase读写操作。
5、业务数据要及时加入hive仓库。
6、hive处理离线型数据、hbase处理经常更新的数据、hdfs是hive和hbase的底层结构也可以存放常规文件。
这样,整个改造基本完成。不过需要注意的是架构设计一定要减少开发程序的复杂度。这里虽然引入了hadoop模型,但是框架上开发者还是隐藏的。业务处理类既可以在单机模式下运行也可以在hadoop上运行,并且可以调用spring、ibatis。减少了开发的学习成本,在实战中慢慢体会就学会了一项新技能。
转载地址:http://www.lanceyan.com/tech/arch/java_threadpool_cloud_arch.html
相关推荐
这里我们为大家分享上海创行科技技术总监严澜的博文——Java线程池管理及分布式Hadoop调度框架搭建。平时的开发中线程是个少不了的东西,比如tomcat里的servlet就是线程,没有线程我们如何提供多用户访问呢?不过很...
9. **大数据技术**:Hadoop是分布式计算框架,YARN是资源调度器,Zookeeper用于分布式协调。理解MapReduce编程模型、HDFS文件系统以及Zookeeper的选举和同步机制。 10. **面试算法**:面试中常见的算法问题包括链表...
- **YARN调度框架事件分发机制**:介绍YARN的事件处理机制。 - **Hadoop底层IPC原理和RPC**:讲解Hadoop内部的远程过程调用机制。 - **Hadoop的底层googleProtoBuf的协议分析**:分析Google Protobuf协议在Hadoop中...
基于Maxwell设计的经典280W 4025RPM高效率科尔摩根12极39槽TBM无框力矩电机:生产与学习双重应用案例,基于Maxwell设计的经典280W高转速科尔摩根TBM无框力矩电机:7615系列案例解析与应用实践,基于maxwwell设计的经典280W,4025RPM 内转子 科尔摩根 12极39槽 TBM无框力矩电机,7615系列。 该案例可用于生产,或者学习用,(157) ,maxwell设计; 280W; 4025RPM内转子; 科尔摩根; 12极39槽TBM无框力矩电机; 7615系列; 生产/学习用。,基于Maxwell设计,高功率280W 12极39槽TBM无框力矩电机:生产与学习双用途案例
基于碳交易的微网优化模型的Matlab设计与实现策略分析,基于碳交易的微网优化模型的Matlab设计与实现探讨,考虑碳交易的微网优化模型matlab ,考虑碳交易; 微网优化模型; MATLAB;,基于Matlab的碳交易微网优化模型研究
二级2025模拟试题(答案版)
OpenCV是一个功能强大的计算机视觉库,它提供了多种工具和算法来处理图像和视频数据。在C++中,OpenCV可以用于实现基础的人脸识别功能,包括从摄像头、图片和视频中识别人脸,以及通过PCA(主成分分析)提取图像轮廓。以下是对本资源大体的介绍: 1. 从摄像头中识别人脸:通过使用OpenCV的Haar特征分类器,我们可以实时从摄像头捕获的视频流中检测人脸。这个过程涉及到将视频帧转换为灰度图像,然后使用预训练的Haar级联分类器来识别人脸区域。 2. 从视频中识别出所有人脸和人眼:在视频流中,除了检测人脸,我们还可以进一步识别人眼。这通常涉及到使用额外的Haar级联分类器来定位人眼区域,从而实现对人脸特征的更细致分析。 3. 从图片中检测出人脸:对于静态图片,OpenCV同样能够检测人脸。通过加载图片,转换为灰度图,然后应用Haar级联分类器,我们可以在图片中标记出人脸的位置。 4. PCA提取图像轮廓:PCA是一种统计方法,用于分析和解释数据中的模式。在图像处理中,PCA可以用来提取图像的主要轮廓特征,这对于人脸识别技术中的面部特征提取尤
麻雀搜索算法(SSA)自适应t分布改进版:卓越性能与优化代码注释,适合深度学习。,自适应t分布改进麻雀搜索算法(TSSA)——卓越的学习样本,优化效果出众,麻雀搜索算法(SSA)改进——采用自适应t分布改进麻雀位置(TSSA),优化后明显要优于基础SSA(代码基本每一步都有注释,代码质量极高,非常适合学习) ,TSSA(自适应t分布麻雀位置算法);注释详尽;高质量代码;适合学习;算法改进结果优异;TSSA相比基础SSA。,自适应T分布优化麻雀搜索算法:代码详解与学习首选(TSSA改进版)
锂电池主动均衡Simulink仿真研究:多种均衡策略与电路架构的深度探讨,锂电池主动均衡与多种均衡策略的Simulink仿真研究:buckboost拓扑及多层次电路分析,锂电池主动均衡simulink仿真 四节电池 基于buckboost(升降压)拓扑 (还有传统电感均衡+开关电容均衡+双向反激均衡+双层准谐振均衡+环形均衡器+cuk+耦合电感)被动均衡电阻式均衡 、分层架构式均衡以及分层式电路均衡,多层次电路,充放电。 ,核心关键词: 锂电池; 主动均衡; Simulink仿真; 四节电池; BuckBoost拓扑; 传统电感均衡; 开关电容均衡; 双向反激均衡; 双层准谐振均衡; 环形均衡器; CUK均衡; 耦合电感均衡; 被动均衡; 电阻式均衡; 分层架构式均衡; 多层次电路; 充放电。,锂电池均衡策略研究:Simulink仿真下的多拓扑主动与被动均衡技术
S7-1500和分布式外围系统ET200MP模块数据
内置式永磁同步电机无位置传感器模型:基于滑膜观测器和MTPA技术的深度探究,内置式永磁同步电机基于滑膜观测器和MTPA的无位置传感器模型研究,基于滑膜观测器和MTPA的内置式永磁同步电机无位置传感器模型 ,基于滑膜观测器;MTPA;内置式永磁同步电机;无位置传感器模型,基于滑膜观测与MTPA算法的永磁同步电机无位置传感器模型
centos7操作系统下安装docker,及docker常用命令、在docker中运行nginx示例,包括 1.设置yum的仓库 2.安装 Docker Engine-Community 3.docker使用 4.查看docker进程是否启动成功 5.docker常用命令及nginx示例 6.常见问题
给曙光服务器安装windows2012r2时候找不到磁盘,问厂家工程师要的raid卡驱动,内含主流大多数品牌raid卡驱动
数学建模相关主题资源2
西门子四轴卧式加工中心后处理系统:828D至840D支持,四轴联动制造解决方案,图档处理与试看程序一应俱全。,西门子四轴卧加后处理系统:支持828D至840D系统,四轴联动高精度制造解决方案,西门子四轴卧加后处理,支持828D~840D系统,支持四轴联动,可制制,看清楚联系,可提供图档处理试看程序 ,核心关键词:西门子四轴卧加后处理; 828D~840D系统支持; 四轴联动; 制程; 联系; 图档处理试看程序。,西门子四轴卧加后处理程序,支持多种系统与四轴联动
MATLAB下基于列约束生成法CCG的两阶段鲁棒优化问题求解入门指南:算法验证与经典文献参考,MATLAB下基于列约束生成法CCG的两阶段鲁棒优化问题求解入门指南:算法验证与文献参考,MATLAB代码:基于列约束生成法CCG的两阶段问题求解 关键词:两阶段鲁棒 列约束生成法 CCG算法 参考文档:《Solving two-stage robust optimization problems using a column-and-constraint generation method》 仿真平台:MATLAB YALMIP+CPLEX 主要内容:代码构建了两阶段鲁棒优化模型,并用文档中的相对简单的算例,进行CCG算法的验证,此篇文献是CCG算法或者列约束生成算法的入门级文献,其经典程度不言而喻,几乎每个搞CCG的两阶段鲁棒的人都绕不过此篇文献 ,两阶段鲁棒;列约束生成法;CCG算法;MATLAB;YALMIP+CPLEX;入门级文献。,MATLAB代码实现:基于两阶段鲁棒与列约束生成法CCG的算法验证研究
“生热研究的全面解读:探究参数已配置的Comsol模型中的18650圆柱锂电池表现”,探究已配置参数的COMSOL模型下的锂电池生热现象:18650圆柱锂电池模拟分析,出一个18650圆柱锂电池comsol模型 参数已配置,生热研究 ,出模型; 18650圆柱锂电池; comsol模型; 参数配置; 生热研究,构建18650电池的COMSOL热研究模型
移动端多端运行的知识付费管理系统源码,TP6+Layui+MySQL后端支持,功能丰富,涵盖直播、点播、管理全功能及礼物互动,基于UniApp跨平台开发的移动端知识付费管理系统源码:多端互通、全功能齐备、后端采用TP6与PHP及Layui前端,搭载MySQL数据库与直播、点播、管理、礼物等功能的强大整合。,知识付费管理系统源码,移动端uniApp开发,app h5 小程序一套代码多端运行,后端php(tp6)+layui+MySQL,功能齐全,直播,点播,管理,礼物等等功能应有尽有 ,知识付费;管理系统源码;移动端uniApp开发;多端运行;后端php(tp6);layui;MySQL;直播点播;管理功能;礼物功能,知识付费管理平台:全功能多端运行系统源码(PHP+Layui+MySQL)
基于Python+Django+MySQL的个性化图书推荐系统:协同过滤推荐,智能部署,用户定制功能,基于Python+Django+MySQL的个性化图书推荐系统:协同过滤推荐,智能部署,用户定制功能,Python+Django+Mysql个性化图书推荐系统 图书在线推荐系统 基于用户、项目、内容的协同过滤推荐算法。 帮远程安装部署 一、项目简介 1、开发工具和实现技术 Python3.8,Django4,mysql8,navicat数据库管理工具,html页面,javascript脚本,jquery脚本,bootstrap前端框架,layer弹窗组件、webuploader文件上传组件等。 2、项目功能 前台用户包含:注册、登录、注销、浏览图书、搜索图书、信息修改、密码修改、兴趣喜好标签、图书评分、图书收藏、图书评论、热点推荐、个性化推荐图书等功能; 后台管理员包含:用户管理、图书管理、图书类型管理、评分管理、收藏管理、评论管理、兴趣喜好标签管理、权限管理等。 个性化推荐功能: 无论是否登录,在前台首页展示热点推荐(根据图书被收藏数量降序推荐)。 登录用户,在前台首页展示个性化推荐