本文转自 http://blog.sina.com.cn/s/blog_7eb42b5a0101g0ei.html
2011年小规模试水
这一阶段的主要工作是建立了一个小的集群,并导入了少量用户进行测试。为了满足用户的需求,我们还调研了任务调度系统和数据交换系统。
我们使用的版本是当时最新的稳定版,Hadoop 0.20.203和Hive 0.7.1。此后经历过多次升级与Bugfix。现在使用的是Hadoop 1.0.3+自有Patch与Hive 0.9+自有Patch。考虑到人手不足及自己的Patch不多等问题,我们采取的策略是,以Apache的稳定版本为基础,尽量将自己的修改提交到社区,并且应用这些还没有被接受的 Patch。因为现在Hadoop生态圈中还没有出现一个类似Red Hat地位的公司,我们也不希望被锁定在某个特定的发行版上,更重要的是Apache Jira与Maillist依然是获取Hadoop相关知识、解决Hadoop相关问题最好的地方(Cloudera为CDH建立了私有的Jira,但人气不足),所以没有采用Cloudera或者Hortonworks的发行版。目前我们正对Hadoop 2.1.0进行测试。
在前期,我们团队的主要工作是ops+solution,现在DBA已接手了很大一部分ops的工作,我们正在转向solution+dev的工作。
我们使用Puppet管理整个集群,用Ganglia和Zabbix做监控与报警。
集群搭建好,用户便开始使用,面临的第一个问题是需要任务级别的调度、报警和工作流服务。当用户的任务出现异常或其他情况时,需要以邮件或者短信的方式通知用户。而且用户的任务间可能有复杂的依赖关系,需要工作流系统来描述任务间的依赖关系。我们首先将目光投向开源项目Apache Oozie。Oozie是Apache开发的工作流引擎,以XML的方式描述任务及任务间的依赖,功能强大。但在测试后,发现Oozie并不是一个很好的选择。
Oozie采用XML作为任务的配置,特别是对于MapReduce Job,需要在XML里配置Map、Reduce类、输入输出路径、Distributed Cache和各种参数。在运行时,先由Oozie提交一个Map only的Job,在这个Job的Map里,再拼装用户的Job,通过JobClient提交给JobTracker。相对于Java编写的Job Runner,这种XML的方式缺乏灵活性,而且难以调试和维 护。先提交一个Job,再由这个Job提交真正Job的设计,我个人认为相当不优雅。
另一个问题在于,公司内的很多用户,希望调度系统不仅可以调度Hadoop任务,也可以调度单机任务,甚至Spring容器里的任务,而Oozie并不支持Hadoop集群之外的任务。
所以我们转而自行开发调度系统Taurus(https://github.com/dianping/taurus)。Taurus是一个调度系统, 通过时间依赖与任务依赖,触发任务的执行,并通过任务间的依赖管理将任务组织成工作流;支持Hadoop/Hive Job、Spring容器里的任务及一般性任务的调度/监控。
图1 Taurus的结构图
图1是Taurus的结构图,Taurus的主节点称为Master,Web 界面与Master在一起。用户在Web界面上创建任务后,写入MySQL做持久化存储,当Master判断任务触发的条件满足时,则从MySQL中读出 任务信息,写入ZooKeeper;Agent部署在用户的机器上,观察ZooKeeper上的变化,获得任务信息,启动任务。Taurus在2012年 中上线。
另一个迫切需求是数据交换系统。用户需要将MySQL、MongoDB甚至文件中的数据导入到HDFS上进行分析。另外一些用户要将HDFS中生成的数据再导入MySQL作为报表展现或者供在线系统使用。
我们首先调研了Apache Sqoop,它主要用于HDFS与关系型数据库间的数据传输。经过测试,发现Sqoop的主要问题在于数据的一致性。Sqoop采用 MapReduce Job进行数据库的插入,而Hadoop自带Task的重试机制,当一个Task失败,会自动重启这个Task。这是一个很好的特性,大大提高了Hadoop的容错能力,但对于数据库插入操作,却带来了麻烦。
考虑有10个Map,每个Map插入十分之一的数据,如果有一个Map插入到一半时failed,再通过Task rerun执行成功,那么fail那次插入的一半数据就重复了,这在很多应用场景下是不可接受的。 而且Sqoop不支持MongoDB和MySQL之间的数据交换,但公司内却有这需求。最终我们参考淘宝的DataX,于2011年底开始设计并开发了Wormhole。之所以采用自行开发而没有直接使用DataX主要出于维护上的考虑,而且DataX并未形成良好的社区。
2012年大规模应用
2012年,出于成本、稳定性与源码级别维护性的考虑,公司的Data Warehouse系统由商业的OLAP数据库转向Hadoop/Hive。2012年初,Wormhole开发完成;之后Taurus也上线部署;大量应用接入到Hadoop平台上。为了保证数据的安全性,我们开启了Hadoop的Security特性。为了提高数据的压缩率,我们将默认存储格式替换为RCFile,并开发了Hive Web供公司内部使用。2012年底,我们开始调研HBase。
图2 Wormhole的结构图
Wormhole(https://github.com /dianping/wormhole)是一个结构化数据传输工具,用于解决多种异构数据源间的数据交换,具有高效、易扩展等特点,由Reader、 Storage、Writer三部分组成(如图2所示)。Reader是个线程池,可以启动多个Reader线程从数据源读出数据,写入Storage。 Writer也是线程池,多线程的Writer不仅用于提高吞吐量,还用于写入多个目的地。Storage是个双缓冲队列,如果使用一读多写,则每个目的地都拥有自己的Storage。
当写入过程出错时,将自动执行用户配置的Rollback方法,消除错误状态,从而保证数据的完整性。通过开发不同的Reader和Writer插件,如MySQL、MongoDB、Hive、HDFS、SFTP和Salesforce,我们就可以支持多种数据源间的数据交换。Wormhole在大众点评内部得到了大量使用,获得了广泛好评。
随着越来越多的部门接入Hadoop,特别是数据仓库(DW)部门接入后,我们对数据的安全性需求变得更为迫切。而Hadoop默认采用Simple的用户认证模式,具有很大的安全风险。
默认的Simple认证模式,会在Hadoop的客户端执行whoami命令,并以whoami命令的形式返回结果,作为访问Hadoop的用户名(准确地说,是以whoami的形式返回结果,作为Hadoop RPC的userGroupInformation参数发起RPC Call)。这样会产生以下三个问题。
(1)User Authentication。假设有账号A和账号B,分别在Host1和Host2上。如果恶意用户在Host2上建立了一个同名的账号A,那么通过RPC Call获得的UGI就和真正的账号A相同,伪造了账号A的身份。用这种方式,恶意用户可以访问/修改其他用户的数据。
(2)Service Authentication。Hadoop采用主从结构,如NameNode-DataNode、JobTracker-Tasktracker。Slave节点启动时,主动连接Master节点。Slave到Master的连接过程,没有经过认证。假设某个用户在某台非Hadoop机器上,错误地启动了一个Slave实例,那么也会连接到Master;Master会为它分配任务/数据,可能会影响任务的执行。
(3)可管理性。任何可以连到Master节点的机器,都可以请求集群的服务,访问HDFS,运行Hadoop Job,无法对用户的访问进行控制。
从Hadoop 0.20.203开始,社区开发了Hadoop Security,实现了基于Kerberos的Authentication。任何访问Hadoop的用户,都必须持有KDC(Key Distribution Center)发布的Ticket或者Keytab File(准确地说,是Ticket Granting Ticket),才能调用Hadoop的服务。用户通过密码,获取Ticket,Hadoop Client在发起RPC Call时读取Ticket的内容,使用其中的Principal字段,作为RPC Call的UserGroupInformation参数,解决了问题(1)。Hadoop的任何Daemon进程在启动时,都需要使用Keytab File做Authentication。因为Keytab File的分发是由管理员控制的,所以解决了问题(2)。最后,不论是Ticket,还是Keytab File,都由KDC管理/生成,而KDC由管理员控制,解决了问题(3)。
在使用了Hadoop Security之后,只有通过了身份认证的用户才能访问Hadoop,大大增强了数据的安全性和集群的可管理性。之后我们基于Hadoop Secuirty,与DW部门一起开发了ACL系统,用户可以自助申请Hive上表的权限。在申请通过审批工作流之后,就可以访问了。
JDBC是一种很常用的数据访问接口,Hive自带了Hive Server,可以接受Hive JDBC Driver的连接。实际 上,Hive JDBC Driver是将JDBC的请求转化为Thrift Call发给Hive Server,再由Hive Server将Job 启动起来。但Hive自带的Hive Server并不支持Security,默认会使用启动Hive Server的用户作为Job的owner提交到 Hadoop,造成安全漏洞。因此,我们自己开发了Hive Server的Security,解决了这个问题。
但在Hive Server的使用过程中,我们发现Hive Server并不稳定,而且存在内存泄漏。更严重的是由于Hive Server自身的设计缺陷,不能很好地应对并发访问的情况,所以我们现在并不推荐使用Hive JDBC的访问方式。
社区后来重新开发了Hive Server 2,解决了并发的问题,我们正在对Hive Server 2进行测试。
有一些同事,特别是BI的同事,不熟悉以CLI的方式使用Hive,希望Hive可以有个GUI界面。在上线Hive Server之后,我们调研了开源的SQL GUI Client——Squirrel,可惜使用Squirrel访问Hive存在一些问题。
- 办公网与线上环境是隔离的,在办公机器上运行的Squirrel无法连到线上环境的Hive Server。
- Hive会返回大量的数据,特别是当用户对于Hive返回的数据量没有预估的情况下,Squirrel会吃掉大量的内存,然后Out of Memory挂掉。
- Hive JDBC实现的JDBC不完整,导致Squirrel的GUI中只有一部分功能可用,用户体验非常差。
基于以上考虑,我们自己开发了Hive Web,让用户通过浏览器就可以使用Hive。Hive Web最初是作为大众点评第一届Hackathon的一个项目被开发出来的,技术上很简单,但获得了良好的反响。现在Hive Web已经发展成了一个RESTful的Service,称为Polestar(https://github.com/dianping /polestar)。
图3 Polestar的结构
图3是Polestar的结构图。目前Hive Web只是一个GWT的前端,通过HAProxy将RESTfull Call分发到执行引擎Worker执行。Worker将自身的状态保存在MySQL,将数据保存在HDFS,并使用JSON返回数据或数据在HDFS的 路径。我们还将Shark与Hive Web集成到了一起,用户可以选择以Hive或者Shark执行Query。
一开始我们使用LZO作为存储格式,使大文件可以在MapReduce处理中被切分,提高并行度。但LZO的压缩比不够高,按照我们的测试,Lzo压缩的文件,压缩比基本只有Gz的一半。
经过调研,我们将默认存储格式替换成RCFile,在RCFile内部再使用Gz压缩,这样既可保持文件可切分的特性,同时又可获得Gz的高压缩比,而且因 为RCFile是一种列存储的格式,所以对于不需要的字段就不用从I/O读入,从而提高了性能。图4显示了将Nginx数据分别用Lzo、 RCFile+Gz、RCFfile+Lzo压缩,再不断增加Select的Column数,在Hive上消耗的CPU时间(越小越好)。
图4 几种压缩方式在Hive上消耗的CPU时间
但RCFile的读写需要知道数据的Schema,而且需要熟悉Hive的Ser/De接口。为了让MapReduce Job能方便地访问RCFile,我们使用了Apache Hcatalog。
社区又针对Hive 0.11开发了ORCFile,我们正在对ORCFile进行测试。
随着Facebook、淘宝等大公司成功地在生产环境应用HBase,HBase越来越受到大家的关注,我们也开始对HBase进行测试。通过测试我们发现 HBase非常依赖参数的调整,在默认配置下,HBase能获得很好的写性能,但读性能不是特别出色。通过调整HBase的参数,在5台机器的HBase 集群上,对于1KB大小的数据,也能获得5万左右的TPS。在HBase 0.94之后,HBase已经优化了默认配置。
原来我们希望HBase集群与主Hadoop集群共享HDFS,这样可以简化运维成本。但在测试中,发现即使主Hadoop集群上没有任何负载,HBase的性能也很糟糕。我们认为,这是由于大量数据属于远程读写所引起的。所以我们现在的HBase集群都是单独部署的。并且通过封装HBase Client与Master-Slave Replication,使用2套HBase集群实现了HBase的HA,用来支撑线上业务。
2013年持续演进
在建立了公司主要的大数据架构后,我们上线了HBase的应用,并引入Spark/Shark以提高Ad Hoc Query的执行时间,并调研分布式日志收集系统,来取代手工脚本做日志导入。
现在HBase上线的应用主要有OpenAPI和手机团购推荐。OpenAPI类似于HBase的典型应用Click Stream,将开放平台开发者的访问日志记录在HBase中,通过Scan操作,查询开发者在一段时间内的Log,但这一功能目前还没有对外开放。手机 团购推荐是一个典型的KVDB用法,将用户的历史访问行为记录在HBase中,当用户使用手机端访问时,从HBase获得用户的历史行为数据,做团购推 荐。
当Hive大规模使用之后,特别是原来使用OLAP数据库的BI部门的同事转入后,一个越来越大的抱怨就是Hive的执行速度。对于离 线的ETL任务,Hadoop/Hive是一个良好的选择,但动辄分钟级的响应时间,使得Ad Hoc Query的用户难以忍受。为了提高Ad Hoc Query的响应时间,我们将目光转向了Spark/Shark。
Spark是美国加州大学伯克利分校AMPLab开发的分布式计算系统,基于RDD(Resilient Distributed Dataset),主要使用内存而不是硬盘,可以很好地支持迭代计算。因为是一个基于Memory的系统,所以在数据量能够放进Memory的情况下,能 够大幅缩短响应时间。Shark类似于Hive,将SQL解析为Spark任务,并且Shark复用了大量Hive的已有代码。
在Shark接入之后,大大降低了Ad Hoc Query的执行时间。比如SQL语句:
select host, count(1) from HIPPOLOG where dt = '2013-08-28' group by host order by host desc;
在Hive执行的时间是352秒,而Shark只需要60~70秒。但对于Memory中放不下的大数据量,Shark反而会变慢。
目前用户需要在Hive Web中选择使用Hive还是Shark,未来我们会在Hive中添加Semantic-AnalysisHook,通过解析用户提交的Query,根据 数据量的大小,自动选择Hive或者Shark。另外,因为我们目前使用的是Hadoop 1,不支持YARN,所以我们单独部署了一个小集群用于Shark任务的执行。
Wormhole解决了结构化数据的交换问题,但对于非结构化数据,例如各种日志,并不适合。我们一直采用脚本或用户程序直接写HDFS的方式将用户的Log导入HDFS。缺点是,需要一定的开发和维护成本。我们 希望使用Apache Flume解决这个问题,但在测试了Flume之后,发现了Flume存在一些问题:Flume不能保证端到端的数据完整性,数据可能丢失,也可能重复。
例如,Flume的HDFSsink在数据写入/读出Channel时,都有Transcation的保证。当Transaction失败时,会回滚,然后重试。但由于HDFS不可修改文件的内容,假设有1万行数据要写入HDFS,而在写入5000行时,网络出现问题导致写入失败,Transaction回滚,然后重写这10000条记录成功,就会导致第一次写入的5000行重复。我们试图修正Flume的这些问题,但由于这些问题是设计上的,并不能通过简单的Bugfix来解决,所以我们转而开发Blackhole系统将数据流导入HDFS。目前Blackhole正在开发中。
总结
图5是各系统总体结构图,深蓝部分为自行开发的系统。
图5 大众点评各系统总体结构图
在这2年多的Hadoop实践中,我们得到了一些宝贵经验。
- 建设一支强大的技术团队是至关重要的。Hadoop的生态系统,还处在快速演化中,而且文档相当匮乏。只有具备足够强的技术实力,才能用好开源软件,并在开源软件不能满足需求时,自行开发解决问题。
- 要立足于解决用户的需求。用户需要的东西,会很容易被用户接受,并推广开来;某些东西技术上很简单,但可以解决用户的大问题。
- 对用户的培训,非常重要。
相关推荐
大数据Hadoop平台监控、预警及自动化的应用场景包括: 1. 大数据分析和处理。 2. 实时流式数据处理。 3. 数据仓库和商业智能。 4. 云计算和大数据中心。 5. 物联网和智能家居。 大数据Hadoop平台监控、预警及...
大数据Hadoop视频教程大数据Hadoop视频教程大数据Hadoop视频教程
对于希望在大数据领域取得进展的企业和个人来说,理解Hadoop框架的数据处理流程并掌握其实践案例,是不可或缺的专业技能。通过对Hadoop框架的研究和实践,可以更好地应对信息社会的挑战,利用数据创造价值。
2,王家林编写的“云计算分布式大数据Hadoop实战高手之路---高手崛起”通过数个案例实战和Hadoop高级主题的动手操作带领您直达Hadoop高手境界。3,王家林编写的“云计算分布式大数据Hadoop实战高手之路---高手之巅”...
Java接口是Hadoop的编程接口,用于开发Hadoop应用程序。 Hadoop知识学习篇是该方案的第三个重要方面。Hadoop知识学习篇主要包括FileSystem总结、文件读取过程、文件写入过程、Hadoop均衡器、Hadoop存档、数据完整性...
在IT行业中,云计算和大数据是两个至关重要的领域,而Hadoop作为大数据处理的基石,更是备受关注。"王家林的“云计算分布式大数据Hadoop实战高手之路"是一份旨在帮助初学者逐步掌握Hadoop技术的专业教程。这个教程的...
《Hadoop大数据平台应用案例详细分析》是一份深入探讨大数据处理和分析的综合资源包,包含课件、视频教程以及相关的代码示例。这个压缩包是针对那些希望深入了解Hadoop在实际业务场景中应用的学习者设计的。Hadoop...
大数据hadoop学习资源,包含分布式文件系统HDFS,大数据存储,Map-Reduce体系架构,Hbase
基于Python和大数据hadoop电影分析系统源码+文档说明.zip,本项目是一套98分毕业设计系统,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业,包含:项目源码、...
NoSQL数据库,作为非关系型数据库,具备高扩展性、大容量、高性能、可共享和高灵活性等优点,是应对海量和复杂数据挑战的关键技术,特别是在大数据应用场景中。 数据挖掘是运用算法对数据库中的数据进行分析,以...
大数据Hadoop平台下数据存储技术研究 大数据Hadoop平台下数据存储技术研究是当前热门的研究方向之一,本文将对大数据Hadoop平台下的数据存储技术进行详细的研究和分析。 首先,需要了解大数据的概念。大数据是指...
在笔记本上搭建 Hadoop 集群,本文档对笔 记本上创建虚拟机搭建 Hadoop 集群的步骤进行了说明。包含所有需要安装的软件与服务 的版本,安装路径,安装方法等。...以 Hadoop 集群为核心的大数据平台
Hadoop平台可以应用于智慧城市、人工智能、数据挖掘、机器学习等领域。 1.2 Hadoop特点 Hadoop的主要特点包括高可扩展性、高可靠性、分布式计算和存储、支持多种数据格式等。 1.3 Hadoop软件设计 Hadoop的软件设计...
总的来说,大数据Hadoop MapReduce词频统计是大数据分析的重要应用之一,它揭示了文本数据的内在结构,为文本挖掘、信息检索等应用提供了基础。通过理解和掌握这一技术,开发者可以更好地应对现代数据驱动决策的需求...
1.大数据框架hadoop; 2.根据表名,获取全部数据,支持翻页; 3.获取数据总条数; 4.根据表名、上次查询最后一条记录的rowkey,获取下一页数据; 5.数据支持jsonarray/list等;
Hadoop作为大数据技术平台中最流行的一个生态系统,其技术复杂而全面,涵盖从数据存储到数据处理的多个环节。Hadoop生态系统的核心技术包括HDFS和MapReduce,HDFS负责数据的分布式存储,而MapReduce负责数据的分布式...
这个"**Hadoop简单应用案例**"涵盖了Hadoop生态系统中的多个关键组件,包括MapReduce、HDFS、Zookeeper以及Hive,这些都是大数据处理的核心工具。下面将详细讲解这些知识点。 1. **MapReduce**:MapReduce是Hadoop...