- 浏览: 35114 次
- 性别:
- 来自: 深圳
文章分类
- 全部博客 (53)
- java (8)
- spring (3)
- tomcat (2)
- apache (2)
- mysql (4)
- orm (0)
- ibatis (0)
- maven (0)
- html5 (0)
- jquery (1)
- springMVC (0)
- beetl (0)
- webService (1)
- linux (0)
- IBM (0)
- c++ (0)
- server (1)
- 前端那些事儿 (0)
- awt (2)
- image (2)
- Thumbnails (1)
- imageio (1)
- 图片处理 (1)
- js (2)
- 前端框架 (1)
- javascript (1)
- 字符串 (1)
- format (1)
- 通讯 (1)
- im (1)
- 即时聊天 (1)
- dwr服务器 (1)
- openfire (1)
- spark (1)
- security (1)
- filter (1)
- linux SVN安装及配置图解教程 (1)
- nginx (1)
- svn (1)
最新评论
spring的声明式事务管理其实是比较复杂的,事实上这种复杂性正是由于事务本身的复杂性导致的,如果能用两三句话就把这部分内容说清楚是不现实的,也是不成熟的,而我对这部分的理解也可能是不全面的,还是那句话,希望大家和我一起把本贴的质量提交起来。
在下面的文章中,我讲会多次提到第一篇文章,第一篇文章的地址是:http://www.iteye.com/topic/87426
如果要理解事务提交的话,理解事务开始是一个前提条件,所以请先看第一篇文章,再来看这篇
如果你仔细看下去,我想肯定是有很多收获,因为我们确实能从spring的代码和思想中学到很多东西。
正文:
其实俺的感觉就是事务提交要比事务开始复杂,看事务是否提交我们还是要回到TransactionInterceptor类的invoke方法
Java代码 收藏代码
public Object invoke(MethodInvocation invocation) throws Throwable {
// Work out the target class: may be <code>null</code>.
// The TransactionAttributeSource should be passed the target class
// as well as the method, which may be from an interface
Class targetClass = (invocation.getThis() != null) ? invocation.getThis().getClass() : null;
// Create transaction if necessary.
TransactionInfo txInfo = createTransactionIfNecessary(invocation.getMethod(), targetClass);
Object retVal = null;
try {
// This is an around advice.
// Invoke the next interceptor in the chain.
// This will normally result in a target object being invoked.
retVal = invocation.proceed();
}
catch (Throwable ex) {
// target invocation exception
doCloseTransactionAfterThrowing(txInfo, ex);
throw ex;
}
finally {
doFinally(txInfo);//业务方法出栈后必须先执行的一个方法
}
doCommitTransactionAfterReturning(txInfo);
return retVal;
}
其中的doFinally(txInfo)那一行很重要,也就是说不管如何,这个doFinally方法都是要被调用的,为什么它这么重要呢,举个例子:
我们还是以propregation_required来举例子吧,假设情况是这样的,AService中有一个方法调用了BService中的,这两个方法都处在事务体之中,他们的传播途径都是required。那么调用开始了,AService的方法首先入方法栈,并创建了TransactionInfo的实例,接着BService的方法入栈,又创建了一个TransactionInfo的实例,而重点要说明的是TransactionInfo是一个自身关联的内部类,第二个方法入栈时,会给新创建的TransactionInfo的实例设置一个属性,就是TransactionInfo对象中的private TransactionInfo oldTransactionInfo;属性,这个属性表明BService方法的创建的TransactionInfo对象是有一个old的transactionInfo对象的,这个oldTransactionInfo对象就是AService方法入栈时创建的TransactionInfo对象,我们还记得在createTransactionIfNecessary方法里有这样一个方法吧:
Java代码 收藏代码
protected TransactionInfo createTransactionIfNecessary(Method method, Class targetClass) {
// We always bind the TransactionInfo to the thread, even if we didn't create
// a new transaction here. This guarantees that the TransactionInfo stack
// will be managed correctly even if no transaction was created by this aspect.
txInfo.bindToThread();
return txInfo;
}
就是这个bindToThread()方法在作怪:
private void bindToThread() {
// Expose current TransactionStatus, preserving any existing transactionStatus for
// restoration after this transaction is complete.
oldTransactionInfo = (TransactionInfo) currentTransactionInfo.get();
currentTransactionInfo.set(this);
}
如果当前线程中已经有了一个TransactionInfo,则拿出来放到新建的transactionInfo对象的oldTransactionInfo属性中,然后再把新建的TransactionInfo设置到当前线程中。
这里有一个概念要搞清楚,就是TransactionInfo对象并不是表明事务状态的对象,表明事务状态的对象是TransactionStatus对象,这个对象同样是TransactionInfo的一个属性(这一点,我在前面一篇文章中并没有讲清楚)。
接下来BService中的那个方法返回,那么该它退栈了,它退栈后要做的就是doFinally方法,即把它的oldTransactionInfo设置到当前线程中(这个TransactionInfo对象显然就是AService方法入栈时创建的,怎么现在又要设置到线程中去呢,原因就是BService的方法出栈时并不提交事务,因为BService的传播途径是required,所以要把栈顶的方法所创建transactioninfo给设置到当前线程中),即调用AService的方法时所创建的TransactionInfo对象。那么在AServie的方法出栈时同样会设置TransactionInfo对象的oldTransactionInfo到当前线程,这时候显然oldTransactionInfo是空的,但AService中的方法会提交事务,所以它的oldTransactionInfo也应该是空了。
在这个小插曲之后,么接下来就应该是到提交事务了,之前在AService的方法出栈时,我们拿到了它入栈时创建的TransactionInfo对象,这个对象中包含了AService的方法事务状态。即TransactionStatus对象,很显然,太显然了,事务提交中的任何属性都和事务开始时的创建的对象息息相关,这个TransactionStatus对象哪里来的,我们再回头看看createTransactionIfNessary方法吧:
Java代码 收藏代码
protected TransactionInfo createTransactionIfNecessary(Method method, Class targetClass) {
txInfo.newTransactionStatus(this.transactionManager.getTransaction(txAttr));
}
再看看transactionManager.getTransaction(txAttr)方法吧:
Java代码 收藏代码
public final TransactionStatus getTransaction(TransactionDefinition definition) throws TransactionException {
else if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRED ||
definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW ||
definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) {
if (debugEnabled) {
logger.debug("Creating new transaction with name [" + definition.getName() + "]");
}
doBegin(transaction, definition);
boolean newSynchronization = (this.transactionSynchronization != SYNCHRONIZATION_NEVER);
return newTransactionStatus(definition, transaction, true, newSynchronization, debugEnabled, null);//注意这里的返回值,返回的就是一个TransactionStatus对象,这个对象表明了一个事务的状态,比如说是否是一个新的事务,事务是否已经结束,等等,这个对象是非常重要的,在事务提交的时候还是会用到它的。 }
}
}
还有一点需要说明的是,AService的方法在执行之前创建的transactionstatus确实是通过这个方法创建的,但是,BService的方法在执行之前创建transactionstatus的方法就与这个不一样了,下面会有详解。
回顾了事务开始时所调用的方法之后,是不是觉得现在对spring如何处理事务越来越清晰了呢。由于这么几个方法的调用,每个方法入栈之前它的事务状态就已经被设置好了。这个事务状态就是为了在方法出栈时被调用而准备的。
让我们再次回到BService中的方法出栈的那个时间段,看看spring都做了些什么,我们知道,后入栈的肯定是先出栈,BService中的方法后入栈,拿它肯定要先出栈了,它出栈的时候是要判断是否要提交事务,释放资源的,让我们来看看TransactionInterceptor的invoke的最后那个方法doCommitTransactionAfterReturning:
Java代码 收藏代码
protected void doCommitTransactionAfterReturning(TransactionInfo txInfo) {
if (txInfo != null && txInfo.hasTransaction()) {
if (logger.isDebugEnabled()) {
logger.debug("Invoking commit for transaction on " + txInfo.joinpointIdentification());
}
this.transactionManager.commit(txInfo.getTransactionStatus());
//瞧:提交事务时用到了表明事务状态的那个TransactionStatus对象了。
}
}
看这个方法的名字就知道spring是要在业务方法出栈时提交事务,貌似很简单,但是事实是这样的吗? 我们接着往下看。
Java代码 收藏代码
public final void commit(TransactionStatus status) throws TransactionException {
DefaultTransactionStatus defStatus = (DefaultTransactionStatus) status;
if (defStatus.isCompleted()) {
throw new IllegalTransactionStateException(
"Transaction is already completed - do not call commit or rollback more than once per transaction");
}
if (defStatus.isLocalRollbackOnly()) {
if (defStatus.isDebug()) {
logger.debug("Transactional code has requested rollback");
}
processRollback(defStatus);
return;
}
if (!shouldCommitOnGlobalRollbackOnly() && defStatus.isGlobalRollbackOnly()) {
if (defStatus.isDebug()) {
logger.debug("Global transaction is marked as rollback-only but transactional code requested commit");
}
processRollback(defStatus);
throw new UnexpectedRollbackException(
"Transaction has been rolled back because it has been marked as rollback-only");
}
processCommit(defStatus);
}
上面这段代码就是transactionmanager中的commit,但是看上去,它又把自己的职责分配给别人了,从代码里我们看到,如果事务已经结束了就抛异常,如果事务是rollbackonly的,那么就rollback吧,但是按照正常流程,我们还是想来看一下,事务的提交,就是processCommit(status)这个方法吧。
Java代码 收藏代码
private void processCommit(DefaultTransactionStatus status) throws TransactionException {
try {
boolean beforeCompletionInvoked = false;
try {
triggerBeforeCommit(status);
triggerBeforeCompletion(status);
beforeCompletionInvoked = true;
if (status.hasSavepoint()) {
if (status.isDebug()) {
logger.debug("Releasing transaction savepoint");
}
status.releaseHeldSavepoint();
}
else if (status.isNewTransaction()) {//这个判断非常重要,下面会详细讲解这个判断的作用
if (status.isDebug()) {
logger.debug("Initiating transaction commit");
}
boolean globalRollbackOnly = status.isGlobalRollbackOnly();
doCommit(status);
// Throw UnexpectedRollbackException if we have a global rollback-only
// marker but still didn't get a corresponding exception from commit.
`````````````````````
}
我们注意到,在判断一个事务是否是新事务之前还有一个status.hasSavepoint()的判断,我认为这个判断事实上就是嵌套事务的判断,即判断这个事务是否是嵌套事务,如果不是嵌套事务,则再判断它是否是一个新事务,下面这段话就非常重要了,BService的中的方法是先出栈的,也就是说在调用BService之前的创建的那个事务状态对象在这里要先被判断,但是由于在调用BService的方法之前已经创建了一个Transaction和Session(假设我们使用的是hibernate3),这时候在创建第二个TransactionInfo(再强调一下吧,TransactionInfo并不是Transaction,Transaction是真正的事务对象,TransactionInfo只不过是一个辅助类而已,用来记录一系列状态的辅助类)的TransactionStatus的时候就会进入下面这个方法(当然在这之前会判断一下当前线程中是否已经有了一个SessionHolder对象,不清楚SessionHolder作用的同学情况第一篇文章),这个方法其实应该放到第一篇文章中讲的,但是想到如果不讲事务提交就讲这个方法好像没有这么贴切,废话少说,我们来看一下吧:
Java代码 收藏代码
private TransactionStatus handleExistingTransaction(
TransactionDefinition definition, Object transaction, boolean debugEnabled)
throws TransactionException {
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NEVER) {
throw new IllegalTransactionStateException(
"Transaction propagation 'never' but existing transaction found");
}
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NOT_SUPPORTED) {
if (debugEnabled) {
logger.debug("Suspending current transaction");
}
Object suspendedResources = suspend(transaction);
boolean newSynchronization = (this.transactionSynchronization == SYNCHRONIZATION_ALWAYS);
return newTransactionStatus(
definition, null, false, newSynchronization, debugEnabled, suspendedResources);
}
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW) {
if (debugEnabled) {
logger.debug("Suspending current transaction, creating new transaction with name [" +
definition.getName() + "]");
}
Object suspendedResources = suspend(transaction);
doBegin(transaction, definition);
boolean newSynchronization = (this.transactionSynchronization != SYNCHRONIZATION_NEVER);
return newTransactionStatus(
definition, transaction, true, newSynchronization, debugEnabled, suspendedResources);
}
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) {
if (!isNestedTransactionAllowed()) {
throw new NestedTransactionNotSupportedException(
"Transaction manager does not allow nested transactions by default - " +
"specify 'nestedTransactionAllowed' property with value 'true'");
}
if (debugEnabled) {
logger.debug("Creating nested transaction with name [" + definition.getName() + "]");
}
if (useSavepointForNestedTransaction()) {
// Create savepoint within existing Spring-managed transaction,
// through the SavepointManager API implemented by TransactionStatus.
// Usually uses JDBC 3.0 savepoints. Never activates Spring synchronization.
DefaultTransactionStatus status =
newTransactionStatus(definition, transaction, false, false, debugEnabled, null);
status.createAndHoldSavepoint();
return status;
}
else {
// Nested transaction through nested begin and commit/rollback calls.
// Usually only for JTA: Spring synchronization might get activated here
// in case of a pre-existing JTA transaction.
doBegin(transaction, definition);
boolean newSynchronization = (this.transactionSynchronization != SYNCHRONIZATION_NEVER);
return newTransactionStatus(definition, transaction, true, newSynchronization, debugEnabled, null);
}
}
// Assumably PROPAGATION_SUPPORTS.
if (debugEnabled) {
logger.debug("Participating in existing transaction");
}
boolean newSynchronization = (this.transactionSynchronization != SYNCHRONIZATION_NEVER);
return newTransactionStatus(definition, transaction, false, newSynchronization, debugEnabled, null);
}
我们看到这个方法其实很明了,就是什么样的传播途径就创建什么样的transactionstatus,这个方法是在事务开始时被调用的,拿到我们之前举的例子中来看下,我们就恍然大悟了,原来,如果之前已经创建过事务,那个这个新建的transactionstauts就不应该是属于一个newTransaction了,所以第3个参数就是false了。
也就是说,在BService的方法出栈要要执行processcommit,但是由于BService的那个TransactionStatus不是一个newTransaction,所以它根本不会触发这个动作:
Java代码 收藏代码
else if (status.isNewTransaction()) {//这个判断非常重要,下面会详细讲解这个判断的作用
if (status.isDebug()) {
logger.debug("Initiating transaction commit");
}
boolean globalRollbackOnly = status.isGlobalRollbackOnly();
doCommit(status);
}
也就是说在BService的方法出栈后,事务是不会提交的。这完全符合propragation_required的模型。
而在AService的方法出栈后,AService的方法所对应的那个TransactionStatus对象的newTransaction属性是为true的,即它会触发上面这段代码,进行真正的事务提交。让我们回想一下AService方法入栈之前创建TransactionStatus对象的情形吧:
newTransactionStatus(definition, transaction, true, newSynchronization, debugEnabled, null);看到第3个参数为true没有。
那么事务该提交了吧,事务的提交我想使用过hibernate的人都知道怎么提交了:
txObject.getSessionHolder().getTransaction().commit();
从当前线程中拿到SessionHolder,再拿到开始事务的那个Transaction对象,然后再commit事务
在下面的文章中,我讲会多次提到第一篇文章,第一篇文章的地址是:http://www.iteye.com/topic/87426
如果要理解事务提交的话,理解事务开始是一个前提条件,所以请先看第一篇文章,再来看这篇
如果你仔细看下去,我想肯定是有很多收获,因为我们确实能从spring的代码和思想中学到很多东西。
正文:
其实俺的感觉就是事务提交要比事务开始复杂,看事务是否提交我们还是要回到TransactionInterceptor类的invoke方法
Java代码 收藏代码
public Object invoke(MethodInvocation invocation) throws Throwable {
// Work out the target class: may be <code>null</code>.
// The TransactionAttributeSource should be passed the target class
// as well as the method, which may be from an interface
Class targetClass = (invocation.getThis() != null) ? invocation.getThis().getClass() : null;
// Create transaction if necessary.
TransactionInfo txInfo = createTransactionIfNecessary(invocation.getMethod(), targetClass);
Object retVal = null;
try {
// This is an around advice.
// Invoke the next interceptor in the chain.
// This will normally result in a target object being invoked.
retVal = invocation.proceed();
}
catch (Throwable ex) {
// target invocation exception
doCloseTransactionAfterThrowing(txInfo, ex);
throw ex;
}
finally {
doFinally(txInfo);//业务方法出栈后必须先执行的一个方法
}
doCommitTransactionAfterReturning(txInfo);
return retVal;
}
其中的doFinally(txInfo)那一行很重要,也就是说不管如何,这个doFinally方法都是要被调用的,为什么它这么重要呢,举个例子:
我们还是以propregation_required来举例子吧,假设情况是这样的,AService中有一个方法调用了BService中的,这两个方法都处在事务体之中,他们的传播途径都是required。那么调用开始了,AService的方法首先入方法栈,并创建了TransactionInfo的实例,接着BService的方法入栈,又创建了一个TransactionInfo的实例,而重点要说明的是TransactionInfo是一个自身关联的内部类,第二个方法入栈时,会给新创建的TransactionInfo的实例设置一个属性,就是TransactionInfo对象中的private TransactionInfo oldTransactionInfo;属性,这个属性表明BService方法的创建的TransactionInfo对象是有一个old的transactionInfo对象的,这个oldTransactionInfo对象就是AService方法入栈时创建的TransactionInfo对象,我们还记得在createTransactionIfNecessary方法里有这样一个方法吧:
Java代码 收藏代码
protected TransactionInfo createTransactionIfNecessary(Method method, Class targetClass) {
// We always bind the TransactionInfo to the thread, even if we didn't create
// a new transaction here. This guarantees that the TransactionInfo stack
// will be managed correctly even if no transaction was created by this aspect.
txInfo.bindToThread();
return txInfo;
}
就是这个bindToThread()方法在作怪:
private void bindToThread() {
// Expose current TransactionStatus, preserving any existing transactionStatus for
// restoration after this transaction is complete.
oldTransactionInfo = (TransactionInfo) currentTransactionInfo.get();
currentTransactionInfo.set(this);
}
如果当前线程中已经有了一个TransactionInfo,则拿出来放到新建的transactionInfo对象的oldTransactionInfo属性中,然后再把新建的TransactionInfo设置到当前线程中。
这里有一个概念要搞清楚,就是TransactionInfo对象并不是表明事务状态的对象,表明事务状态的对象是TransactionStatus对象,这个对象同样是TransactionInfo的一个属性(这一点,我在前面一篇文章中并没有讲清楚)。
接下来BService中的那个方法返回,那么该它退栈了,它退栈后要做的就是doFinally方法,即把它的oldTransactionInfo设置到当前线程中(这个TransactionInfo对象显然就是AService方法入栈时创建的,怎么现在又要设置到线程中去呢,原因就是BService的方法出栈时并不提交事务,因为BService的传播途径是required,所以要把栈顶的方法所创建transactioninfo给设置到当前线程中),即调用AService的方法时所创建的TransactionInfo对象。那么在AServie的方法出栈时同样会设置TransactionInfo对象的oldTransactionInfo到当前线程,这时候显然oldTransactionInfo是空的,但AService中的方法会提交事务,所以它的oldTransactionInfo也应该是空了。
在这个小插曲之后,么接下来就应该是到提交事务了,之前在AService的方法出栈时,我们拿到了它入栈时创建的TransactionInfo对象,这个对象中包含了AService的方法事务状态。即TransactionStatus对象,很显然,太显然了,事务提交中的任何属性都和事务开始时的创建的对象息息相关,这个TransactionStatus对象哪里来的,我们再回头看看createTransactionIfNessary方法吧:
Java代码 收藏代码
protected TransactionInfo createTransactionIfNecessary(Method method, Class targetClass) {
txInfo.newTransactionStatus(this.transactionManager.getTransaction(txAttr));
}
再看看transactionManager.getTransaction(txAttr)方法吧:
Java代码 收藏代码
public final TransactionStatus getTransaction(TransactionDefinition definition) throws TransactionException {
else if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRED ||
definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW ||
definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) {
if (debugEnabled) {
logger.debug("Creating new transaction with name [" + definition.getName() + "]");
}
doBegin(transaction, definition);
boolean newSynchronization = (this.transactionSynchronization != SYNCHRONIZATION_NEVER);
return newTransactionStatus(definition, transaction, true, newSynchronization, debugEnabled, null);//注意这里的返回值,返回的就是一个TransactionStatus对象,这个对象表明了一个事务的状态,比如说是否是一个新的事务,事务是否已经结束,等等,这个对象是非常重要的,在事务提交的时候还是会用到它的。 }
}
}
还有一点需要说明的是,AService的方法在执行之前创建的transactionstatus确实是通过这个方法创建的,但是,BService的方法在执行之前创建transactionstatus的方法就与这个不一样了,下面会有详解。
回顾了事务开始时所调用的方法之后,是不是觉得现在对spring如何处理事务越来越清晰了呢。由于这么几个方法的调用,每个方法入栈之前它的事务状态就已经被设置好了。这个事务状态就是为了在方法出栈时被调用而准备的。
让我们再次回到BService中的方法出栈的那个时间段,看看spring都做了些什么,我们知道,后入栈的肯定是先出栈,BService中的方法后入栈,拿它肯定要先出栈了,它出栈的时候是要判断是否要提交事务,释放资源的,让我们来看看TransactionInterceptor的invoke的最后那个方法doCommitTransactionAfterReturning:
Java代码 收藏代码
protected void doCommitTransactionAfterReturning(TransactionInfo txInfo) {
if (txInfo != null && txInfo.hasTransaction()) {
if (logger.isDebugEnabled()) {
logger.debug("Invoking commit for transaction on " + txInfo.joinpointIdentification());
}
this.transactionManager.commit(txInfo.getTransactionStatus());
//瞧:提交事务时用到了表明事务状态的那个TransactionStatus对象了。
}
}
看这个方法的名字就知道spring是要在业务方法出栈时提交事务,貌似很简单,但是事实是这样的吗? 我们接着往下看。
Java代码 收藏代码
public final void commit(TransactionStatus status) throws TransactionException {
DefaultTransactionStatus defStatus = (DefaultTransactionStatus) status;
if (defStatus.isCompleted()) {
throw new IllegalTransactionStateException(
"Transaction is already completed - do not call commit or rollback more than once per transaction");
}
if (defStatus.isLocalRollbackOnly()) {
if (defStatus.isDebug()) {
logger.debug("Transactional code has requested rollback");
}
processRollback(defStatus);
return;
}
if (!shouldCommitOnGlobalRollbackOnly() && defStatus.isGlobalRollbackOnly()) {
if (defStatus.isDebug()) {
logger.debug("Global transaction is marked as rollback-only but transactional code requested commit");
}
processRollback(defStatus);
throw new UnexpectedRollbackException(
"Transaction has been rolled back because it has been marked as rollback-only");
}
processCommit(defStatus);
}
上面这段代码就是transactionmanager中的commit,但是看上去,它又把自己的职责分配给别人了,从代码里我们看到,如果事务已经结束了就抛异常,如果事务是rollbackonly的,那么就rollback吧,但是按照正常流程,我们还是想来看一下,事务的提交,就是processCommit(status)这个方法吧。
Java代码 收藏代码
private void processCommit(DefaultTransactionStatus status) throws TransactionException {
try {
boolean beforeCompletionInvoked = false;
try {
triggerBeforeCommit(status);
triggerBeforeCompletion(status);
beforeCompletionInvoked = true;
if (status.hasSavepoint()) {
if (status.isDebug()) {
logger.debug("Releasing transaction savepoint");
}
status.releaseHeldSavepoint();
}
else if (status.isNewTransaction()) {//这个判断非常重要,下面会详细讲解这个判断的作用
if (status.isDebug()) {
logger.debug("Initiating transaction commit");
}
boolean globalRollbackOnly = status.isGlobalRollbackOnly();
doCommit(status);
// Throw UnexpectedRollbackException if we have a global rollback-only
// marker but still didn't get a corresponding exception from commit.
`````````````````````
}
我们注意到,在判断一个事务是否是新事务之前还有一个status.hasSavepoint()的判断,我认为这个判断事实上就是嵌套事务的判断,即判断这个事务是否是嵌套事务,如果不是嵌套事务,则再判断它是否是一个新事务,下面这段话就非常重要了,BService的中的方法是先出栈的,也就是说在调用BService之前的创建的那个事务状态对象在这里要先被判断,但是由于在调用BService的方法之前已经创建了一个Transaction和Session(假设我们使用的是hibernate3),这时候在创建第二个TransactionInfo(再强调一下吧,TransactionInfo并不是Transaction,Transaction是真正的事务对象,TransactionInfo只不过是一个辅助类而已,用来记录一系列状态的辅助类)的TransactionStatus的时候就会进入下面这个方法(当然在这之前会判断一下当前线程中是否已经有了一个SessionHolder对象,不清楚SessionHolder作用的同学情况第一篇文章),这个方法其实应该放到第一篇文章中讲的,但是想到如果不讲事务提交就讲这个方法好像没有这么贴切,废话少说,我们来看一下吧:
Java代码 收藏代码
private TransactionStatus handleExistingTransaction(
TransactionDefinition definition, Object transaction, boolean debugEnabled)
throws TransactionException {
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NEVER) {
throw new IllegalTransactionStateException(
"Transaction propagation 'never' but existing transaction found");
}
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NOT_SUPPORTED) {
if (debugEnabled) {
logger.debug("Suspending current transaction");
}
Object suspendedResources = suspend(transaction);
boolean newSynchronization = (this.transactionSynchronization == SYNCHRONIZATION_ALWAYS);
return newTransactionStatus(
definition, null, false, newSynchronization, debugEnabled, suspendedResources);
}
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW) {
if (debugEnabled) {
logger.debug("Suspending current transaction, creating new transaction with name [" +
definition.getName() + "]");
}
Object suspendedResources = suspend(transaction);
doBegin(transaction, definition);
boolean newSynchronization = (this.transactionSynchronization != SYNCHRONIZATION_NEVER);
return newTransactionStatus(
definition, transaction, true, newSynchronization, debugEnabled, suspendedResources);
}
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) {
if (!isNestedTransactionAllowed()) {
throw new NestedTransactionNotSupportedException(
"Transaction manager does not allow nested transactions by default - " +
"specify 'nestedTransactionAllowed' property with value 'true'");
}
if (debugEnabled) {
logger.debug("Creating nested transaction with name [" + definition.getName() + "]");
}
if (useSavepointForNestedTransaction()) {
// Create savepoint within existing Spring-managed transaction,
// through the SavepointManager API implemented by TransactionStatus.
// Usually uses JDBC 3.0 savepoints. Never activates Spring synchronization.
DefaultTransactionStatus status =
newTransactionStatus(definition, transaction, false, false, debugEnabled, null);
status.createAndHoldSavepoint();
return status;
}
else {
// Nested transaction through nested begin and commit/rollback calls.
// Usually only for JTA: Spring synchronization might get activated here
// in case of a pre-existing JTA transaction.
doBegin(transaction, definition);
boolean newSynchronization = (this.transactionSynchronization != SYNCHRONIZATION_NEVER);
return newTransactionStatus(definition, transaction, true, newSynchronization, debugEnabled, null);
}
}
// Assumably PROPAGATION_SUPPORTS.
if (debugEnabled) {
logger.debug("Participating in existing transaction");
}
boolean newSynchronization = (this.transactionSynchronization != SYNCHRONIZATION_NEVER);
return newTransactionStatus(definition, transaction, false, newSynchronization, debugEnabled, null);
}
我们看到这个方法其实很明了,就是什么样的传播途径就创建什么样的transactionstatus,这个方法是在事务开始时被调用的,拿到我们之前举的例子中来看下,我们就恍然大悟了,原来,如果之前已经创建过事务,那个这个新建的transactionstauts就不应该是属于一个newTransaction了,所以第3个参数就是false了。
也就是说,在BService的方法出栈要要执行processcommit,但是由于BService的那个TransactionStatus不是一个newTransaction,所以它根本不会触发这个动作:
Java代码 收藏代码
else if (status.isNewTransaction()) {//这个判断非常重要,下面会详细讲解这个判断的作用
if (status.isDebug()) {
logger.debug("Initiating transaction commit");
}
boolean globalRollbackOnly = status.isGlobalRollbackOnly();
doCommit(status);
}
也就是说在BService的方法出栈后,事务是不会提交的。这完全符合propragation_required的模型。
而在AService的方法出栈后,AService的方法所对应的那个TransactionStatus对象的newTransaction属性是为true的,即它会触发上面这段代码,进行真正的事务提交。让我们回想一下AService方法入栈之前创建TransactionStatus对象的情形吧:
newTransactionStatus(definition, transaction, true, newSynchronization, debugEnabled, null);看到第3个参数为true没有。
那么事务该提交了吧,事务的提交我想使用过hibernate的人都知道怎么提交了:
txObject.getSessionHolder().getTransaction().commit();
从当前线程中拿到SessionHolder,再拿到开始事务的那个Transaction对象,然后再commit事务
相关推荐
在"spring声明式事务管理配置方式"中,主要涉及到以下几个关键知识点: 1. **Spring事务管理器(Transaction Manager)**: - Spring支持多种事务管理器,如DataSourceTransactionManager(用于JDBC事务)和...
实验 "Spring 声明事务" ...通过这个实验,学生可以深入理解Spring声明式事务管理的工作原理,以及如何在实际项目中配置和使用。这将有助于他们在未来开发中更好地处理事务相关的复杂问题,确保应用程序的数据一致性。
本资料包"spring声明式事务管理+jdbc+连接池.zip"显然是针对Spring框架在数据库操作方面的深入学习,特别是如何利用Spring进行声明式事务管理和JDBC操作,以及如何配置和使用数据库连接池。接下来,我们将详细探讨这...
1.掌握Myeclipse的使用。 2.掌握spring框架和hibernate框架的使用。 3. 掌握整合spring和hibernate的持久化操作编程 4.掌握基于AOP的声明式事务编程...3.配置WEB-INF/applicationContext.xml提供基于AOP的声明式事务
spring声明式事务管理+jdbc+连接池 包内为代码,下载可直接执行。 一直用s2sh,感觉hibernate不好用,所以写了一个spring声明式事务管理+jdbc+连接池。
spring声明式事务管理_入门
理解并熟练运用Spring声明式事务管理,可以有效提高应用程序的事务处理能力,同时降低事务管理的复杂性。通过合理的配置,可以确保数据的一致性和完整性,这对于任何处理数据库操作的应用都是至关重要的。
简单编写了一个银行转帐的事务管理程序,建立数据库表的sql亦包含在压缩包中,由于上传的限制,jar包需要自己导入一下。如果转账成功,事务正常结束,只要在转账过程中有一个错误,事务出错,便回滚,帐号上的钱数...
Spring的声明式事务管理是采用AOP(Aspect-Oriented Programming,面向切面编程)实现的。在编程式事务管理中,各事务处理代码实际上是相似的,这就造成了代码重复;而且编程式事务管理会造成事务管理代码和被管理的...
在整个源代码分析中,我们可以看到 Spring 实现声明式事务管理有三个部分: 1. 对在上下文中配置的属性的处理,这里涉及的类是 TransactionAttributeSourceAdvisor,这是一个通知器,用它来对属性值进行处理,属性...
在本文中,我们将深入探讨如何实现动态数据源切换,支持Spring声明式事务管理,并讨论多数据源回滚策略。以下是对这些知识点的详细说明: 1. **动态数据源切换**: - 通过AspectJ实现数据源的动态切换,可以设置在...
在Spring框架中,声明式事务管理是实现事务处理...在博文"Spring使用XML配置声明式事务"中,作者详细讲解了每个步骤,并可能通过示例代码展示了如何实际应用这些配置,帮助读者更好地理解和掌握Spring声明式事务管理。
文件名为`Spring声明式事务处理-1.mht`到`Spring声明式事务处理-5.mht`,通过阅读这些文件,你将能够深入理解Spring声明式事务处理的各个方面,包括配置、使用场景、最佳实践以及常见问题的解决方法。
Spring声明式事务管理是Spring框架中的一个重要特性,它允许开发者在不修改代码的情况下,通过配置来控制事务的边界。这种方式极大地简化了事务管理,使得事务处理与业务逻辑解耦,提高了代码的可维护性和可测试性。...
在这个"spring声明式事务处理demo"中,我们将探讨如何在MyEclipse环境下实现这一功能。 首先,我们要理解Spring事务管理的两种主要方式:编程式事务管理和声明式事务管理。编程式事务管理通常通过AOP(面向切面编程...
本文主要探讨Spring声明式事务管理的配置,这是Spring提供的一种简便的事务管理方式,允许开发者在不编写任何事务管理代码的情况下实现事务控制。这种方式极大地提高了代码的可维护性和可读性。 首先,我们要理解...
Spring声明式事务管理是Spring框架的核心特性之一,它允许开发者在不侵入业务代码的情况下,对应用程序的事务进行管理。这种方式极大地提高了代码的可维护性和灵活性。以下是对Spring声明式事务配置的详细说明: 1....
本文将全面分析Spring中的编程式事务管理和声明式事务管理,旨在帮助开发者深入理解这两种事务管理方式,并在实际项目中合理选择。 **编程式事务管理** 编程式事务管理是通过代码直接控制事务的开始、提交、回滚等...