一致性哈希算法,是1997年麻省理工学院提出,用来解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。不同的是,一致性哈希修正了CARP使用简单哈希算法中未决的问题,是第一个实用的DHT算法。
一致性哈希算法有4个特点:
1. 平衡性(Balance)
指哈希的结果尽可能分布到所有的缓冲中,使所有的Cache都得到利用,这一点多数Hash算法基本上都已实现了。
2. 单调性(Monotonicity)
指在加入新的Cache后,原有的分配key值应该指到新的Cache。简单的哈希算法不能满足这一要求。
3. 分散性(Spread)
指相同的数据,由不同的终端来映射到缓冲中时,应该映射到同一个缓冲。
4. 负载(Load)
是相对于分散性而说,每一个缓冲,不能被不同的客户端映射成不同的内容。
在分布式集群中,对机器的添加删除,或者机器故障后自动脱离集群这些操作是分布式集群管理最基本的功能。如果采用常用的hash(key) mod N算法(key是数据的key,N是机器节点数),那么有机器添加或者删除后,大量的缓存命不中,缓存数据需要重新建立,甚至是进行整体的缓存数据迁移,瞬间会给DB带来极高的系统负载,设置导致DB服务器宕机。
设计分布式cache系统时,一致性hash算法可以帮我们解决哪些问题?
分布式缓存设计核心点:在设计分布式cache系统的时候,我们需要让key的分布均衡,并且在增加cache server后,cache的迁移做到最少。
一致性哈希算法的实现:
1. 建立环形空间
public class Shard<S> { // S类封装了机器节点的信息 ,如name、password、ip、port等 private TreeMap<Long, S> nodes; // 虚拟节点 private List<S> shards; // 真实机器节点 private final int NODE_NUM = 100; // 每个机器节点关联的虚拟节点个数 public Shard(List<S> shards) { super(); this.shards = shards; init(); } private void init() { // 初始化一致性hash环 nodes = new TreeMap<Long, S>(); for (int i = 0; i != shards.size(); ++i) { // 每个真实机器节点都需要关联虚拟节点 final S shardInfo = shards.get(i); for (int n = 0; n < NODE_NUM; n++) // 一个真实机器节点关联NODE_NUM个虚拟节点 nodes.put(hash("SHARD-" + i + "-NODE-" + n), shardInfo); } } public S getShardInfo(String key) { SortedMap<Long, S> tail = nodes.tailMap(hash(key)); // 沿环的顺时针找到一个虚拟节点 if (tail.size() == 0) { return nodes.get(nodes.firstKey()); } return tail.get(tail.firstKey()); // 返回该虚拟节点对应的真实机器节点的信息 } /** * MurMurHash算法,是非加密HASH算法,性能很高, * 比传统的CRC32,MD5,SHA-1(这两个算法都是加密HASH算法,复杂度本身就很高,带来的性能上的损害也不可避免) * 等HASH算法要快很多,而且据说这个算法的碰撞率很低. * http://murmurhash.googlepages.com/ */ private Long hash(String key) { ByteBuffer buf = ByteBuffer.wrap(key.getBytes()); int seed = 0x1234ABCD; ByteOrder byteOrder = buf.order(); buf.order(ByteOrder.LITTLE_ENDIAN); long m = 0xc6a4a7935bd1e995L; int r = 47; long h = seed ^ (buf.remaining() * m); long k; while (buf.remaining() >= 8) { k = buf.getLong(); k *= m; k ^= k >>> r; k *= m; h ^= k; h *= m; } if (buf.remaining() > 0) { ByteBuffer finish = ByteBuffer.allocate(8).order( ByteOrder.LITTLE_ENDIAN); // for big-endian version, do this first: // finish.position(8-buf.remaining()); finish.put(buf).rewind(); h ^= finish.getLong(); h *= m; } h ^= h >>> r; h *= m; h ^= h >>> r; buf.order(byteOrder); return h; } }
一致性哈希基本解决了在P2P环境中最为关键的问题——如何在动态的网络拓扑中分布存储和路由。每个节点仅需维护少量相邻节点的信息,并且在节点加入/退出系统时,仅有相关的少量节点参与到拓扑的维护中。所有这一切使得一致性哈希成为第一个实用的DHT算法。
概念:
DHT: Distributed Hash Table,分布式哈希表,是一种分布式存储方法。
CARP :Common Access Redundancy Protocol,共用地址冗余协议,或简称 CARP 能够使多台主机共享同一 IP 地址。
参考:
相关推荐
一致性哈希算法最初由麻省理工学院的K等人提出,并被广泛应用于分布式系统中,以解决节点动态变化时数据一致性问题。其核心思想是通过引入哈希环,将数据对象均匀分布在哈希环上的不同节点中,以此降低节点变更对...
一致性哈希算法是一种在分布式系统中解决数据分片和负载均衡问题的算法,它主要解决了在动态添加或移除节点时,尽可能少地改变已经存在的数据分布。在云计算和大数据处理领域,一致性哈希被广泛应用,例如在分布式...
一致性哈希算法通过将哈希值空间组织成一个虚拟的环状结构,使得每个存储节点仅负责环上的一段区域,从而有效减少了节点变化时的数据迁移量。然而,一致性哈希算法也存在一些问题,比如在节点数量较少时,节点间的...
一致性哈希算法是一种分布式哈希(Distributed Hash Table, DHT)技术,它解决了在分布式环境中数据分片和负载均衡的问题。在传统的哈希算法中,如果增加或减少服务器节点,会导致大量数据重新分配,而一致性哈希...
本文针对这一问题,深入研究了一致性哈希算法在分布式数据库扩展中的应用,并提出了一种创新的扩展方法,旨在提高扩展效率,降低扩展成本,为大数据环境下的数据库管理带来新的优化方案。 一致性哈希算法最初由...
一致性哈希算法是一种分布式哈希表(DHT)中用于解决数据分片和负载均衡问题的算法。在大型分布式系统中,例如缓存系统、分布式数据库等,一致性哈希能够确保当节点加入或离开时,尽可能少的数据需要迁移,从而保持...
一致性哈希算法是一种分布式哈希(Distributed Hash Table, DHT)技术,旨在解决在分布式环境中数据分布不均匀的问题。Ketama算法是基于一致性哈希的一种优化实现,由Last.fm公司的Simon Willison提出,其目标是在...
一致性哈希算法是一种在分布式系统中用于解决数据分发和负载均衡问题的算法。随着互联网技术的快速发展,分布式系统已经成为支撑大规模服务的关键技术之一。在分布式系统中,多个节点通过网络协同工作,提供高可用性...
### 一致性哈希算法及其在分布式系统中的应用 #### 摘要 一致性哈希算法是一种用于解决分布式系统中节点动态变化导致的数据重新分布问题的关键技术。它通过将哈希空间映射到一个循环的空间中,实现了数据节点的高效...
一致性哈希算法应用及优化是IT领域中分布式系统设计的核心技术之一,特别是在处理大规模数据分布与缓存系统中,其重要性不言而喻。本文将深入探讨一致性哈希算法的基本概念、工作原理以及在实际场景中的应用和优化...
一致性哈希算法作为解决这一问题的重要手段之一,近些年来得到了广泛关注和应用。 一致性哈希算法由David Karger等人在1997年提出,它是一种特殊的哈希算法,主要用于分布式系统中实现负载均衡。与传统的哈希算法...
一致性哈希算法
白话解析:一致性哈希算法1 一致性哈希算法是解决分布式缓存问题的解决方案。缓存服务器数量的变化会引起缓存的雪崩,导致整体系统压力过大而崩溃。为了解决这个问题,一致性哈希算法诞生了。 在了解一致性哈希...
一致性哈希算法(Consistent Hashing)是一种在分布式系统中实现负载均衡的算法,尤其在分布式缓存如Memcached和Redis等场景下广泛使用。它解决了传统哈希算法在节点增减时导致的大量数据迁移问题,提高了系统的可用...
本项目以“基于NIO-EPOOL模型netty实现的具备一致性哈希算法的NAT端口映射器”为主题,深入探讨了Netty在NAT端口映射中的应用,以及一致性哈希算法在此过程中的作用。 首先,我们来了解NIO(Non-blocking I/O,非...
#资源达人分享计划#
#资源达人分享计划#
本文将探讨一个名为"ufire-springcloud-platform"的项目,该项目是基于一致性哈希算法实现WebSocket分布式扩展的一次尝试,并结合Jenkins、GitHub Hook和Docker Compose实现了自动化持续部署。 1. **一致性哈希算法...