`
yistn
  • 浏览: 7287 次
  • 性别: Icon_minigender_2
  • 来自: 北京
最近访客 更多访客>>
社区版块
存档分类
最新评论

linux设备驱动第五篇:驱动中的并发与竟态

阅读更多
目录[-]
综述
信号量与互斥锁
Completions 机制
自旋锁
其他的一些选择
不加锁算法
原子变量与位操作
seqlock(顺序锁)
读取-拷贝-更新(RCU)
小结
综述

在上一篇介绍了linux驱动的调试方法,这一篇介绍一下在驱动编程中会遇到的并发和竟态以及如何处理并发和竞争。
首先什么是并发与竟态呢?并发(concurrency)指的是多个执行单元同时、并行被执行。而并发的执行单元对共享资源(硬件资源和软件上的全局、静态变量)的访问则容易导致竞态(race conditions)。可能导致并发和竟态的情况有:
SMP(Symmetric Multi-Processing),对称多处理结构。SMP是一种紧耦合、共享存储的系统模型,它的特点是多个CPU使用共同的系统总线,因此可访问共同的外设和存储器。

中断。中断可 打断正在执行的进程,若中断处理程序访问进程正在访问的资源,则竞态也会发生。中断也可能被新的更高优先级的中断打断,因此,多个中断之间也可能引起并发而导致竞态。

内核进程的抢占。linux是可抢占的,所以一个内核进程可能被另一个高优先级的内核进程抢占。如果两个进程共同访问共享资源,就会出现竟态。

以上三种情况只有SMP是真正意义上的并行,而其他都是宏观上的并行,微观上的串行。但其都会引发对临界共享区的竞争问题。而解决竞态问题的途径是保证对共享资源的互斥访问,即一个执行单元在访问共享资源的时候,其他的执行单元被禁止访问。那么linux内核中如何做到对对共享资源的互斥访问呢?在linux驱动编程中,常用的解决并发与竟态的手段有信号量与互斥锁,Completions 机制,自旋锁(spin lock),以及一些其他的不使用锁的实现方式。下面一一介绍。
信号量与互斥锁

信号量其实就是一个整型值,其核心是一个想进入临界区的进程将在相关信号量上调用 P; 如果信号量的值大于零, 这个值递减 1 并且进程继续. 相反,,如果信号量的值是 0 ( 或更小 ), 进程必须等待直到别人释放信号量. 解锁一个信号量通过调用 V 完成; 这个函数递增信号量的值,,并且, 如果需要, 唤醒等待的进程。而当信号量的初始值为1的时候,就变成了互斥锁。

信号量的典型使用形式:

//声明信号量
struct semaphore sem;

//初始化信号量
void sema_init(struct semaphore *sem, int val)
    //常用下面两种形式
#define init_MUTEX(sem) sema_init(sem, 1)
#define init_MUTEX_LOCKED(sem) sema_init(sem, 0)
    //以下是初始化信号量的快捷方式,最常用的
DECLARE_MUTEX(name)    //初始化name的信号量为1
DECLARE_MUTEX_LOCKED(name) //初始化信号量为0

//常用操作
DECLARE_MUTEX(mount_sem);
down(&mount_sem); //获取信号量
...
critical section    //临界区
...
up(&mount_sem);    //释放信号量
常用的down操作还有

// 类似down(),因为down()而进入休眠的进程不能被信号打断,而因为down_interruptible()而进入休眠的进程能被信号打断,
// 信号也会导致该函数返回,此时返回值非0
int down_interruptible(struct semaphore *sem);
// 尝试获得信号量sem,若立即获得,它就获得该信号量并返回0,否则,返回非0.它不会导致调用者睡眠,可在中断上下文使用
int down_trylock(struct semaphore *sem);
Completions 机制

完成量(completion)提供了一种比信号量更好的同步机制,它用于一个执行单元等待另一个执行单元执行完某事。

</pre></div><div><pre name="code" class="cpp">// 定义完成量
struct completion my_completion;

// 初始化completion
init_completion(&my_completion);

// 定义和初始化快捷方式:
DECLEAR_COMPLETION(my_completion);

// 等待一个completion被唤醒
void wait_for_completion(struct completion *c);

// 唤醒完成量
void cmplete(struct completion *c);
void cmplete_all(struct completion *c);
自旋锁

若一个进程要访问临界资源,测试锁空闲,则进程获得这个锁并继续执行;若测试结果表明锁扔被占用,进程将在一个小的循环内重复“测试并设置”操作,进行所谓的“自旋”,等待自旋锁持有者释放这个锁。自旋锁与互斥锁类似,但是互斥锁不能用在可能睡眠的代码中,而自旋锁可以用在可睡眠的代码中,典型的应用是可以用在中断处理函数中。自旋锁的相关操作:

// 定义自旋锁
spinlock_t spin;

// 初始化自旋锁
spin_lock_init(lock);

// 获得自旋锁:若能立即获得锁,它获得锁并返回,否则,自旋,直到该锁持有者释放
spin_lock(lock);

// 尝试获得自旋锁:若能立即获得锁,它获得并返回真,否则立即返回假,不再自旋
spin_trylock(lock);

// 释放自旋锁: 与spin_lock(lock)和spin_trylock(lock)配对使用
spin_unlock(lock);

  自旋锁的使用:
// 定义一个自旋锁
spinlock_t lock;
spin_lock_init(&lock);

spin_lock(&lock);  // 获取自旋锁,保护临界区
...  // 临界区
spin_unlock();  // 解锁

自旋锁持有期间内核的抢占将被禁止。自旋锁可以保证临界区不受别的CPU和本CPU内的抢占进程打扰,但是得到锁的代码路径在执行临界区的时候还可能受到中断和底半部(BH)的影响。为防止这种影响,需要用到自旋锁的衍生:

spin_lock_irq() = spin_lock() + local_irq_disable()
spin_unlock_irq() = spin_unlock() + local_irq_enable()
spin_lock_irqsave() = spin_lock() + local_irq_save()
spin_unlock_irqrestore() = spin_unlock() + local_irq_restore()
spin_lock_bh() = spin_lock() + local_bh_disable()
spin_unlock_bh() = spin_unlock() + local_bh_enable()
其他的一些选择

以上是linux驱动编程中经常用到的锁机制,下面讲一些内核中其他的一些实现。

不加锁算法

有时, 你可以重新打造你的算法来完全避免加锁的需要.。许多读者/写者情况 -- 如果只有一个写者 -- 常常能够在这个方式下工作.。如果写者小心使数据结构,由读者所见的,是一直一致的,,有可能创建一个不加锁的数据结构。在linux内核中就有一个通用的无锁的环形缓冲实现,具体内容参考<linux/kfifo.h>。

原子变量与位操作

原子操作指的是在执行过程中不会被别的代码路径所中断的操作。原子变量与位操作都是原子操作。以下是其相关操作介绍。

// 设置原子变量的值
void atomic_set(atomic_t *v, int i);  // 设置原子变量的值为i
atomic_t v = ATOMIC_INIT(0);  // 定义原子变量v,并初始化为0

// 获取原子变量的值
atomic_read(atomic_t *v);  // 返回原子变量的值

// 原子变量加/减
void atomic_add(int i, atomic_t *v);  // 原子变量加i
void atomic_sub(int i, atomic_t *v);  // 原子变量减i

// 原子变量自增/自减
void atomic_inc(atomic_t *v);  // 原子变量增加1
void atomic_dec(atomic_t *v);  // 原子变量减少1

// 操作并测试:对原子变量进行自增、自减和减操作后(没有加)测试其是否为0,为0则返回true,否则返回false
int atomic_inc_and_test(atomic_t *v);
int atomic_dec_and_test(atomic_t *v);
int atomic_sub_and_test(int i, atomic_t *v);

// 操作并返回: 对原子变量进行加/减和自增/自减操作,并返回新的值
int atomic_add_return(int i, atomic_t *v);
int atomic_sub_return(int i, atomic_t *v);
int atomic_inc_return(atomic_t *v);
int atomic_dec_return(atomic_t *v);
  位原子操作:
// 设置位
void set_bit(nr, void *addr);  // 设置addr地址的第nr位,即将位写1

// 清除位
void clear_bit(nr, void *addr);  // 清除addr地址的第nr位,即将位写0

// 改变位
void change_bit(nr, void *addr);  // 对addr地址的第nr位取反

// 测试位
test_bit(nr, void *addr); // 返回addr地址的第nr位

// 测试并操作:等同于执行test_bit(nr, void *addr)后再执行xxx_bit(nr, void *addr)
int test_and_set_bit(nr, void *addr);
int test_and_clear_bit(nr, void *addr);
int test_and_change_bit(nr, void *addr);
seqlock(顺序锁)

使用seqlock锁,读执行单元不会被写执行单元阻塞,即读执行单元可以在写执行单元对被seqlock锁保护的共享资源进行写操作时仍然可以继续读,而不必等待写执行单元完成写操作,写执行单元也不需要等待所有读执行单元完成读操作才去进行写操作。写执行单元之间仍是互斥的。若读操作期间,发生了写操作,必须重新读取数据。seqlock锁必须要求被保护的共享资源不含有指针。

// 获得顺序锁
void write_seqlock(seqlock_t *sl);
int write_tryseqlock(seqlock_t *sl);
write_seqlock_irqsave(lock, flags)
write_seqlock_irq(lock)
write_seqlock_bh()

// 释放顺序锁
void write_sequnlock(seqlock_t *sl);
write_sequnlock_irqrestore(lock, flags)
write_sequnlock_irq(lock)
write_sequnlock_bh()

// 写执行单元使用顺序锁的模式如下:
write_seqlock(&seqlock_a);
...  // 写操作代码块
write_sequnlock(&seqlock_a);
  读执行单元操作:
// 读开始:返回顺序锁sl当前顺序号
unsigned read_seqbegin(const seqlock_t *sl);
read_seqbegin_irqsave(lock, flags)

// 重读:读执行单元在访问完被顺序锁sl保护的共享资源后需要调用该函数来检查,在读访问期间是否有写操作。若有写操作,重读
int read_seqretry(const seqlock_t *sl, unsigned iv);
read_seqretry_irqrestore(lock, iv, flags)

// 读执行单元使用顺序锁的模式如下:
do{
    seqnum = read_seqbegin(&seqlock_a);
    // 读操作代码块
    ...
}while(read_seqretry(&seqlock_a, seqnum));
读取-拷贝-更新(RCU)

读取-拷贝-更新(RCU) 是一个高级的互斥方法,在合适的时候可以取得非常高的效率。RCU可以看作读写锁的高性能版本,相比读写锁,RCU的优点在于既允许多个读执行单元同时访问被保护的数据,又允许多个读执行单元和多个写执行单元同时访问被保护的数据。但是RCU不能替代读写锁,因为如果写比较多时,对读执行单元的性能提高不能弥补写执行单元导致的损失。由于平时应用较少,所以不做多说。

小结

以上就是linux驱动编程中涉及的并发与竞态的内容,下面做一个简单的小结。

现在的处理器基本上都是SMP类型的,而且在新的内核版本中,基本上都支持抢占式的操作,在linux中很多程序都是可重入的,要保护这些数据,就得使用不同的锁机制。而锁机制的基本操作过程其实大同小异的,声明变量,上锁,执行临界区代码,然后再解锁。不同点在于,可以重入的限制不同,有的可以无限制重入,有的只允许异种操作重入,而有的是不允许重入操作的,有的可以在可睡眠代码中使用,有的不可以在可睡眠代码中使用。而在考虑不同的锁机制的使用时,也要考虑CPU处理的效率问题,对于不同的代码长度,不同的代码执行时间,选择一个好的锁对CPU的良好使用有很大的影响,否则将造成浪费。

之前在linux设备驱动第三篇:写一个简单的字符设备驱动中介绍了简单的字符设备驱动,下一篇将介绍一些字符设备驱动中得高级操作。

第一时间获得博客更新提醒,以及更多技术信息分享,欢迎关注个人微信公众平台:程序员互动联盟(coder_online),扫一扫下方二维码或搜索微信号coder_online即可关注,阅读android,chrome等多种热门技术文章。

分享到:
评论

相关推荐

    Linux设备驱动详解第二版

    第5章 Linux文件系统与设备文件系统 92 第6章 字符设备驱动 118 第7章 Linux设备驱动中的并发控制 139 第8章 Linux设备驱动中的阻塞与非阻塞I/O 161 第9章 Linux设备驱动中的异步通知与异步I/O 176 ...

    《Linux设备驱动第三版》 中英文

    《Linux设备驱动第三版》是一本深受欢迎的书籍,它为读者提供了全面的Linux设备驱动程序开发知识。这本书的中英文版本的提供,对于想要深入理解Linux内核以及如何与硬件交互的开发者来说,无疑是一份宝贵的资源。...

    Linux设备驱动程序.pdf

    Linux设备驱动第三版是一本详细讲解Linux设备驱动开发的书籍,涵盖了从基础知识到高级技术的广泛主题。 在第1章中,介绍了驱动程序的角色以及内核的基本划分。驱动程序的角色是指驱动程序在操作系统中作为硬件设备...

    linux设备驱动程序第三版 示例代码

    《Linux设备驱动程序》第三版(通常简称LDD3)是Linux系统开发领域中的经典著作,由O'Reilly Media出版,作者是Robert Love。这本书详细介绍了如何为Linux内核编写设备驱动程序,对于理解操作系统与硬件之间的交互...

    Linux设备驱动程序源码

    通过阅读《Linux设备驱动程序》第三版,你可以了解到这些核心概念,并通过书中提供的源代码实例进行实践,从而提高你在Linux驱动开发领域的专业技能。这份资料不仅适合初学者入门,也对有经验的开发者具有很高的参考...

    Linux设备驱动程序第三版配套源码

    9. **动态加载与模块化**:Linux驱动常作为模块编译,以便于加载和卸载。`module_init`和`module_exit`定义模块的入口和出口点,`module_param`用于传递参数。 10. **并发与同步**:设备驱动需要处理并发访问,理解...

    Linux设备驱动程序(中文版第三版)配套源码

    《Linux设备驱动程序》中文版第三版是一本深入讲解Linux驱动程序开发的权威著作,它为读者揭示了Linux内核与设备之间的交互机制。这本书的配套源码包含了大量的实例,帮助开发者更好地理解和实践Linux驱动程序的编写...

    linux设备驱动第三版+代码示例

    第五到七章涉及的是块设备驱动,讲解了缓冲区管理、请求队列和同步机制。这对于理解硬盘、SSD等存储设备的驱动编写至关重要。同时,读者还将了解到如何处理I/O调度和并发访问问题。 第八到十章节,作者深入讨论了...

    Linux设备驱动程序(英文版第三版)

    《Linux设备驱动程序》是Linux世界中一本非常重要的著作,英文版第三版更是经典之作,为开发者提供了深入理解Linux内核以及如何编写设备驱动程序的宝贵资料。这本书由Jonathan Corbet、Greg Kroah-Hartman和Alan ...

    linux设备驱动书籍详细说明

    - **章节概述**:文章提到了《Linux设备驱动程序(第3版)》第三章的内容,即字符设备驱动程序的学习。这一章通过介绍scull驱动程序的编写来教授基本概念。 - **scull介绍**:scull是一种简单的字符设备驱动程序,它...

    linux设备驱动程序-第三版(中文版)

    1. 第一章 设备驱动简介 2. 建立和运行模块 3. 字符驱动 4. 调试技术 5. 并发和竞争情况 6. 高级字符驱动操作 7. 时间, 延时, 和延后工作 8. 分配内存 9. 与硬件通讯

    LINUX设备驱动第三版_588及代码.rar

    LINUX设备驱动第三版_ 前言 第一章 设备驱动程序简介 设备驱动程序的作用 内核功能划分 设备和模块的分类 安全问题 版本编号 许可证条款 加入内核开发社团 本书概要 第二章 构造和运行模块 设置测试系统 ...

Global site tag (gtag.js) - Google Analytics