Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果作为Avro格式的数据写到目标文件中,主要目的是体会下Hadoop MapReduce操作Avro的基本流程和Avro提供的API
1. Maven依赖
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>learn</groupId> <artifactId>learn.avro</artifactId> <version>1.0-SNAPSHOT</version> <dependencies> <!--avro core--> <dependency> <groupId>org.apache.avro</groupId> <artifactId>avro</artifactId> <version>1.7.7</version> </dependency> <!--avro rpc support--> <dependency> <groupId>org.apache.avro</groupId> <artifactId>avro-ipc</artifactId> <version>1.7.7</version> </dependency> <!--avro utilities for Hadoop MapReduce to process avro files --> <dependency> <groupId>org.apache.avro</groupId> <artifactId>avro-mapred</artifactId> <version>1.7.7</version> </dependency> <!--Avro and Hadoop Map Reduce--> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-core</artifactId> <version>1.2.1</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.apache.avro</groupId> <artifactId>avro-maven-plugin</artifactId> <version>1.7.7</version> <executions> <execution> <phase>generate-sources</phase> <goals> <goal>schema</goal> <goal>protocol</goal> <goal>idl-protocol</goal> </goals> <configuration> <sourceDirectory>${project.basedir}/src/main/avro/</sourceDirectory> <outputDirectory>${project.basedir}/src/main/java/</outputDirectory> </configuration> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.7</source> <target>1.7</target> </configuration> </plugin> </plugins> </build> </project>
2. MapReduce代码:
package examples.avro.mapreduce; import examples.avro.simple.User; import org.apache.avro.Schema; import org.apache.avro.mapred.AvroKey; import org.apache.avro.mapred.AvroValue; import org.apache.avro.mapreduce.AvroJob; import org.apache.avro.mapreduce.AvroKeyInputFormat; import org.apache.avro.mapreduce.AvroKeyValueOutputFormat; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import java.io.IOException; public class MapReduceColorCount extends Configured implements Tool { ///Mapper定义: ///输入Key类型是AvroKey<User>,输入Value类型是NullWritable ///输出Key类型是Text,输出Value类型是IntWritable public static class ColorCountMapper extends Mapper<AvroKey<User>, NullWritable, Text, IntWritable> { @Override public void map(AvroKey<User> key, NullWritable value, Context context) throws IOException, InterruptedException { CharSequence color = key.datum().getFavoriteColor(); if (color == null) { color = "none"; } context.write(new Text(color.toString()), new IntWritable(1)); } } ///Reducer定义: ///输入Key类型是Text,输入Value类型是IntWritable(跟Key的输出Key/Value类型一致) ///输出Key类型是AvroKey<CharSequence>,输出Value类型是AvroValue<Integer> public static class ColorCountReducer extends Reducer<Text, IntWritable, AvroKey<CharSequence>, AvroValue<Integer>> { @Override public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } context.write(new AvroKey<CharSequence>(key.toString()), new AvroValue<Integer>(sum)); } } public int run(String[] args) throws Exception { if (args.length != 2) { System.err.println("Usage: MapReduceColorCount <input path> <output path>"); return -1; } Job job = new Job(getConf()); job.setJarByClass(MapReduceColorCount.class); job.setJobName("Color Count"); ///指定输入路径,输入文件是Avro格式 FileInputFormat.setInputPaths(job, new Path(args[0])); ///指定输出路径,输出文件格式是Key/Value组成的Avro文件,见AvroKeyValueOutputFormat FileOutputFormat.setOutputPath(job, new Path(args[1])); //AvroKeyInputFormat: A MapReduce InputFormat that can handle Avro container files. job.setInputFormatClass(AvroKeyInputFormat.class); job.setMapperClass(ColorCountMapper.class); AvroJob.setInputKeySchema(job, User.getClassSchema()); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); //AvroKeyValueOutputFormat: FileOutputFormat for writing Avro container files of key/value pairs job.setOutputFormatClass(AvroKeyValueOutputFormat.class); job.setReducerClass(ColorCountReducer.class); AvroJob.setOutputKeySchema(job, Schema.create(Schema.Type.STRING)); AvroJob.setOutputValueSchema(job, Schema.create(Schema.Type.INT)); return (job.waitForCompletion(true) ? 0 : 1); } public static void main(String[] args) throws Exception { int res = ToolRunner.run(new MapReduceColorCount(), args); System.exit(res); } }
3. 主要类注释
3.1 AvroKey
/** The wrapper of keys for jobs configured with {@link AvroJob} . */
3.2 AvroValue
/** The wrapper of values for jobs configured with {@link AvroJob} . */
3.3 AvroJob
/** Setters to configure jobs for Avro data. */
3.4 AvroKeyInputFormat
/** * A MapReduce InputFormat that can handle Avro container files. * * <p>Keys are AvroKey wrapper objects that contain the Avro data. Since Avro * container files store only records (not key/value pairs), the value from * this InputFormat is a NullWritable.</p> */
3.5 AvroKeyValueOutputFormat
/** * FileOutputFormat for writing Avro container files of key/value pairs. * * <p>Since Avro container files can only contain records (not key/value pairs), this * output format puts the key and value into an Avro generic record with two fields, named * 'key' and 'value'.</p> * * <p>The keys and values given to this output format may be Avro objects wrapped in * <code>AvroKey</code> or <code>AvroValue</code> objects. The basic Writable types are * also supported (e.g., IntWritable, Text); they will be converted to their corresponding * Avro types.</p> * * @param <K> The type of key. If an Avro type, it must be wrapped in an <code>AvroKey</code>. * @param <V> The type of value. If an Avro type, it must be wrapped in an <code>AvroValue</code>. */
3.6
/** * Sets the job input key schema. * * @param job The job to configure. * @param schema The input key schema. */ public static void setInputKeySchema(Job job, Schema schema) { job.getConfiguration().set(CONF_INPUT_KEY_SCHEMA, schema.toString()); } /** * Sets the job input value schema. * * @param job The job to configure. * @param schema The input value schema. */ public static void setInputValueSchema(Job job, Schema schema) { job.getConfiguration().set(CONF_INPUT_VALUE_SCHEMA, schema.toString()); }
3.7
/** * Sets the map output key schema. * * @param job The job to configure. * @param schema The map output key schema. */ public static void setMapOutputKeySchema(Job job, Schema schema) { job.setMapOutputKeyClass(AvroKey.class); job.setGroupingComparatorClass(AvroKeyComparator.class); job.setSortComparatorClass(AvroKeyComparator.class); AvroSerialization.setKeyWriterSchema(job.getConfiguration(), schema); AvroSerialization.setKeyReaderSchema(job.getConfiguration(), schema); AvroSerialization.addToConfiguration(job.getConfiguration()); } /** * Sets the map output value schema. * * @param job The job to configure. * @param schema The map output value schema. */ public static void setMapOutputValueSchema(Job job, Schema schema) { job.setMapOutputValueClass(AvroValue.class); AvroSerialization.setValueWriterSchema(job.getConfiguration(), schema); AvroSerialization.setValueReaderSchema(job.getConfiguration(), schema); AvroSerialization.addToConfiguration(job.getConfiguration()); }
相关推荐
#### 三、MapReduce 工作原理详解 **MapReduce** 是一种编程模型,用于处理大规模数据集的分布式计算。其核心思想是将数据处理任务分解成两个阶段:Map阶段和Reduce阶段。 - **Map 阶段**:输入数据被分割成多个...
avro是hadoop中一个序列化项目,avro和mapreduce结合如何使用,可以实现数据结构化并且序列化和反序列化
在MapReduce任务中读取Avro文件,会使用到avro-mapred.jar。 然而目前的avro-mapred.jar是基于较老的版本的,使用时会报错: org.apache.hadoop.mapred.YarnChild: Error running child : java.lang....
在实际应用中,我们可能会遇到各种各样的场景,例如使用Avro文件作为Hadoop MapReduce的输入和输出,或者在分布式系统中作为消息传递的中间格式。通过理解Avro的基本原理和使用方法,我们可以更有效地利用这一强大的...
5. **与Hadoop的集成**:Avro是Hadoop生态系统的一部分,它可以与Hadoop MapReduce、HDFS和其他组件无缝配合,提供高效的输入/输出格式。 6. **数据压缩**:Avro支持内置的压缩选项,如deflate和snappy,可以在保存...
此外,文档还可能讨论Hadoop生态系统中的其他组件,如HDFS(Hadoop分布式文件系统)、YARN(另一种资源协调器)、HBase(NoSQL数据库)、ZooKeeper(协调服务)、Avro(数据序列化系统)等,因为MapReduce往往与其他...
在Windows环境下,使用Eclipse开发MapReduce程序时,必须确保所有必要的Hadoop库都被正确引入。这是因为MapReduce是Hadoop生态系统中的核心组件,用于处理分布式计算任务。以下是一些关于如何在Eclipse中配置和使用...
6. **I/O Integration**: Avro与Hadoop的Input/Output格式紧密集成,可以方便地与其他Hadoop组件(如MapReduce、Hive、Pig)一起使用。 7. **Zstandard Compression**: Avro支持Zstandard(zstd)压缩算法,提供更...
例如,在MapReduce任务中,Avro可以作为输入和输出格式,简化数据的读写操作。 ### 使用Avro工具 Avro提供了多种命令行工具,如`avro-tools.jar`,可以用于转换数据格式、验证schema、编译Java代码等。例如,`avro-...
- **大数据处理**:Avro与Hadoop生态系统紧密集成,是Hadoop MapReduce、Apache Spark等框架的理想数据格式。 - **消息传递**:Avro可以作为消息队列如Kafka的数据格式,确保不同语言的服务间数据交换的便利性。 - *...
标题中的“Hadoop序列化机制”是指Hadoop生态系统中用于数据传输和存储的数据表示方式,它是Hadoop MapReduce和Hadoop Distributed File System (HDFS)等组件之间交换数据的关键技术。序列化是将对象转化为可存储或...
org.apache.hadoop.io.serializer.avro org.apache.hadoop.jmx org.apache.hadoop.lib.lang org.apache.hadoop.lib.server org.apache.hadoop.lib.service org.apache.hadoop.lib.service.hadoop org.apache....
Hadoop作为一个开源的分布式存储与计算框架,在处理大数据方面表现出色,其核心组件HDFS和MapReduce对于理解和运用Hadoop至关重要。 首先,Hadoop的HDFS(Hadoop Distributed File System)是一种高度容错性的系统...
这个"hadop-3.1.0-windows"压缩包是专为在Windows环境下运行Hadoop设计的,包含了所有必要的依赖文件,使得开发者可以在Windows操作系统上搭建和运行Hadoop集群。 在Windows上部署Hadoop并不像在Linux那样常见,...
6. **集成Hadoop**:Avro与Hadoop生态系统无缝集成,可以作为Hadoop MapReduce的输入和输出格式,便于数据处理。在"avrotest"项目中,你可能会看到如何配置和使用Avro数据与Hadoop的接口。 7. **序列化与反序列化**...
这些JAR文件包含了Hadoop的核心组件以及依赖的第三方库,确保开发者能够访问Hadoop的API并进行分布式计算。 标题 "eclipse开发hadoop2.5.2所用到的jar" 指的是在Eclipse中进行Hadoop 2.5.2开发时所需的特定版本的...
Avro 为了适应 Hadoop 生态系统,定义了一种容器文件格式。这种格式的文件包含单一模式,并以二进制编码存储数据。文件被组织成可压缩的数据块,块与块之间用同步标记符分隔,便于 MapReduce 进行任务划分。文件结构...
【标题】"传智黑马赵星老师hadoop七天课程资料笔记-第三天(全)" 涵盖了Hadoop技术体系中的关键知识点,主要针对Hadoop MapReduce的执行流程、本地模式、日志格式、序列化以及HTTP相关概念进行了深入讲解。...
Avro,是一个数据序列化系统,提供数据快速读写的能力;以及Oozie,一个工作流调度系统,用于管理Hadoop作业。 云计算是与Hadoop紧密相关的领域,云计算提供了按需的资源分配,使得Hadoop能够运行在虚拟化的计算...