`
longzhun
  • 浏览: 374570 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Storm常见模式——分布式RPC

 
阅读更多

分布式RPC(distributed RPC,DRPC)用于对Storm上大量的函数调用进行并行计算过程。对于每一次函数调用,Storm集群上运行的拓扑接收调用函数的参数信息作为输入流,并将计算结果作为输出流发射出去。

DRPC本身算不上Storm的特性,它是通过Storm的基本元素:streams,spouts,bolts,topologies而衍生的一个模式。DRPC可以单独作为一个独立于Storm的库发布,但由于其重要性还是和Storm捆绑在了一起。

总体概述

DRPC通过DRPC Server来实现,DRPC Server的整体工作过程如下:

  1. 接收到一个RPC调用请求;
  2. 发送请求到Storm上的拓扑;
  3. 从Storm上接收计算结果;
  4. 将计算结果返回给客户端。

以上过程,在client客户端看来,一个DRPC调用看起来和一般的RPC调用没什么区别。下面代码是client通过DRPC调用“reach”函数,参数为“http://twitter.com”:

DRPCClient client = new DRPCClient("drpc-host", 3772);
String result = client.execute("reach", "http://twitter.com");

DRPC内部工作流程如下:

  1. Client向DRPC Server发送被调用执行的DRPC函数名称及参数。
  2. Storm上的topology通过DRPCSpout实现这一函数,从DPRC Server接收到函数调用流;
  3. DRPC Server会为每次函数调用生成唯一的id;
  4. Storm上运行的topology开始计算结果,最后通过一个ReturnResults的Bolt连接到DRPC Server,发送指定id的计算结果;
  5. DRPC Server通过使用之前为每个函数调用生成的id,将结果关联到对应的发起调用的client,将计算结果返回给client。

 

LinearDRPCTopologyBuilder

Storm提供了一个topology builder——LinearDRPCTopologyBuilder,它可以自动完成几乎所有的DRPC步骤。包括:

  1. 构建spout
  2. DRPC Server返回结果;
  3. Bolt提供函数用于对tuples进行聚集。

下面是一个简单的例子,这个DRPC拓扑只是简单的在输入参数后追加!后返回:

复制代码
public static class ExclaimBolt extends BaseBasicBolt {
    public void execute(Tuple tuple, BasicOutputCollector collector) {
        String input = tuple.getString(1);
        collector.emit(new Values(tuple.getValue(0), input + "!"));
    }

    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("id", "result"));
    }
}

public static void main(String[] args) throws Exception {
    LinearDRPCTopologyBuilder builder = new LinearDRPCTopologyBuilder("exclamation");
    builder.addBolt(new ExclaimBolt(), 3);
    // ...
}
复制代码

由上述例子可见,我们只需很少的工作即可完成拓扑。当创建LinearDRPCTopologyBuilder的时候,需要指定拓扑中DRPC函数的名称exclamation。一个DRPC Server可以协调多个函数,每个函数有不同的函数名称。拓扑中的第一个bolt的输入是个字段:第一个是请求的id号;第二个是请求的参数。

LinearDRPCTopologyBuilder同时需要最后一个bolt发射一个包含两个字段的输出流:第一个字段是请求id;第二个字段是计算结果。因此,所有的中间tuples必须包含请求id作为第一个字段。

例子中,ExclaimBolt在输入tuple的第二个字段后面追加“!”LinearDRPCTopologyBuilder负责处理其余的协调工作:与DRPC Server建立连接,发送结果给DRPC Server

本地模式DRPC

DRPC可以以本地模式运行,下面的代码是如何在本地模式运行上面的例子:

复制代码
LocalDRPC drpc = new LocalDRPC();
LocalCluster cluster = new LocalCluster();

cluster.submitTopology("drpc-demo", conf, builder.createLocalTopology(drpc));

System.out.println("Results for 'hello':" + drpc.execute("exclamation", "hello"));

cluster.shutdown();
drpc.shutdown();
复制代码

首先创建一个LocalDRPC对象,该对象在本地模拟一个DRPC Server,正如LocalCluster在本地模拟一个Storm集群一样。然后创建一个LocalCluster对象在本地模式下运行拓扑。LinearDRPCTopologyBuilder含有单独的方法用于创建本地拓扑和远程拓扑。

本地模式下,LocalDRPC并不绑定任何端口,因此Storm的拓扑需要了解要通讯的对象——这就是为什么createLocalTopology方法需要以LocalDRPC对象作为输入。

加载完拓扑之后,通过对LocalDRPC调用execute方法,就可以执行DRPC函数调用了。

远程模式DRPC

在实际的Storm集群上运行DRPC也一样很简单。只需完成以下步骤:

  1. 启动DRPC Server(s);
  2. 配置DRPC Server(s)地址;
  3. 向Storm集群提交DRPC拓扑。

首先,通过storm脚本启动DRPC Server:

bin/storm drpc

然后,在Storm集群中配置DRPC Server地址,这就是DRPCSpout读取函数调用请求的地方。这一步的配置可以通过storm.yaml文件或者拓扑的配置来完成。通过storm.yaml文件的配置方式如下:

drpc.servers:
  - "drpc1.foo.com"
  - "drpc2.foo.com"

最后,通过StormSubmitter启动DRPC拓扑。为了以远程模式运行上面的例子,代码如下:

StormSubmitter.submitTopology("exclamation-drpc", conf, builder.createRemoteTopology());

createRemoteTopology被用于为Storm集群创建合适的拓扑。

一个复杂的例子

上面的exclamation只是一个简单的DRPC例子。下面通过一个复杂的例子介绍如何在Storm集群内进行DRPC——计算Twitter上每个URL的到达度(reach),也就是每个URL暴露给的不同人的个数。

为了完成这一计算,需要完成以下步骤:

  1. 获取所有点选了(tweet)该URL的人;
  2. 获取步骤1中所有人的关注者(followers,粉丝);
  3. 对所有关注者followers进行去重;
  4. 对步骤3中的关注者人数进行求和。

一个简单的URL到达度计算可能涉及成千上万次数据库调用以及数以百万的followers记录,计算量非常大。有了Storm,将很容易实现这一计算过程。单机上可能需要运行几分钟才能完成,在Storm集群上,即使是最难计算的URL也只需要几秒钟。

这个例子的代码在storm-starter:点击这里。这里是如何创建拓扑的代码:

复制代码
LinearDRPCTopologyBuilder builder = new LinearDRPCTopologyBuilder("reach");
builder.addBolt(new GetTweeters(), 3);
builder.addBolt(new GetFollowers(), 12)
        .shuffleGrouping();
builder.addBolt(new PartialUniquer(), 6)
        .fieldsGrouping(new Fields("id", "follower"));
builder.addBolt(new CountAggregator(), 2)
        .fieldsGrouping(new Fields("id"));
复制代码
拓扑的执行分为以下四步:
  1. GetTweeters:获取所有tweet了指定URL的用户列表,这个Bolt将输入流[id, url]转换成输出流[id, tweeter],每个url元组被映射为多个tweeter元组。
  2. GetFollowers:获取步骤1中所有用户列表的followers,这个Bolt将输入流[id, twetter]转换成输出流[id, follower],当某个人同时是多个人的关注者follower,而且这些人都tweet了指定的URL,那么将产生重复的follower元组。
  3. PartialUniquer:将所有followers按照follower id分组,使得同一个follower在同一个task中被处理。这个Bolt接收follower并进行去重计数。
  4. CountAggregator:从各个PartialUniquer中接收各部分的计数结果,累加后完成到达度计算。

下面是PartialUniquer这个Bolt的代码实现:

复制代码
public class PartialUniquer extends BaseBatchBolt {
    BatchOutputCollector _collector;
    Object _id;
    Set<String> _followers = new HashSet<String>();
    
    @Override
    public void prepare(Map conf, TopologyContext context, BatchOutputCollector collector, Object id) {
        _collector = collector;
        _id = id;
    }

    @Override
    public void execute(Tuple tuple) {
        _followers.add(tuple.getString(1));
    }
    
    @Override
    public void finishBatch() {
        _collector.emit(new Values(_id, _followers.size()));
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("id", "partial-count"));
    }
}
复制代码

PartialUniquer通过继承BaseBatchBolt实现了IBatchBolt接口,batch bolt提供了API用于将一批tuples作为整体来处理。每个请求id会创建一个新的batch bolt实例,同时Storm负责这些实例的清理工作。

PartialUniquer接收到一个follower元组时执行execute方法,将follower添加到请求id对应的HashSet集合中。

Batch bolt同时提供了finishBatch方法用于当这个task已经处理完所有的元组时调用。PartialUniquer发射一个包含当前task所处理的follower ids子集去重后个数的元组。

在内部实现上,CoordinatedBolt用于检测指定的bolt是否已经收到指定请求id的所有tuples元组。CoordinatedBolt使用direct streams管理实现这一协作过程。

拓扑的其他部分易于理解。到达度的每一步的计算过程都是并行进行的,通过DRPC实现也是非常容易的。

Non-linear DRPC拓扑

LinearDRPCTopologyBuilder只能处理线性的”DRPC拓扑——正如到达度这样可以通过一系列步骤序列来完成的计算。不难想象,DRPC调用中包含有更复杂的带有分支和合并Bolt的拓扑。目前,必须自己直接使用CoordinatedBolt来完成这种非线性拓扑的计算。

LinearDRPCTopologyBuilder工作过程

  • DRPCSpout发射[args, return-info],其中return-info包含DRPC Server的主机和端口号,以及DRPC Server为该次请求生成的唯一id号;
  • 构造一个Storm拓扑包含以下部分:
    • DRPCSpout
    • PrepareRequest(生成一个请求id,为return info创建一个流,为args创建一个流)
    • CoordinatedBolt wrappers以及direct groupings
    • JoinResult(将结果与return info拼接起来)
    • ReturnResult(连接到DRPC Server,返回结果)
  • LinearDRPCTopologyBuilder是建立在Storm基本元素之上的高层抽象。

高级进阶

  • KeyedFairBolt用于组织同一时刻多请求的处理过程;
  • 如何直接使用CoordinatedBolt
分享到:
评论

相关推荐

    MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测(含模型描述及示例代码)

    内容概要:本文档详细介绍了基于 MATLAB 实现的 LSTM-AdaBoost 时间序列预测模型,涵盖项目背景、目标、挑战、特点、应用领域以及模型架构和代码示例。随着大数据和AI的发展,时间序列预测变得至关重要。传统方法如 ARIMA 在复杂非线性序列中表现欠佳,因此引入了 LSTM 来捕捉长期依赖性。但 LSTM 存在易陷局部最优、对噪声鲁棒性差的问题,故加入 AdaBoost 提高模型准确性和鲁棒性。两者结合能更好应对非线性和长期依赖的数据,提供更稳定的预测。项目还展示了如何在 MATLAB 中具体实现模型的各个环节。 适用人群:对时间序列预测感兴趣的开发者、研究人员及学生,特别是有一定 MATLAB 编程经验和熟悉深度学习或机器学习基础知识的人群。 使用场景及目标:①适用于金融市场价格预测、气象预报、工业生产故障检测等多种需要时间序列分析的场合;②帮助使用者理解并掌握将LSTM与AdaBoost结合的实现细节及其在提高预测精度和抗噪方面的优势。 其他说明:尽管该模型有诸多优点,但仍存在训练时间长、计算成本高等挑战。文中提及通过优化数据预处理、调整超参数等方式改进性能。同时给出了完整的MATLAB代码实现,便于学习与复现。

    palkert_3ck_01_0918.pdf

    palkert_3ck_01_0918

    pepeljugoski_01_1106.pdf

    pepeljugoski_01_1106

    tatah_01_1107.pdf

    tatah_01_1107

    [AB PLC例程源码][MMS_046393]Motor Speed Reference.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    基于51的步进电机控制系统20250302

    题目:基于单片机的步进电机控制系统 模块: 主控:AT89C52RC 步进电机(ULN2003驱动) 按键(3个) 蓝牙(虚拟终端模拟) 功能: 1、可以通过蓝牙远程控制步进电机转动 2、可以通过按键实现手动与自动控制模式切换。 3、自动模式下,步进电机正转一圈,反转一圈,循环 4、手动模式下可以通过按键控制步进电机转动(顺时针和逆时针)

    [AB PLC例程源码][MMS_041234]Logix Fault Handler.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    [AB PLC例程源码][MMS_042348]Using an Ultra3000 as an Indexer on DeviceNet with a CompactLogix.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    智慧校园平台建设全流程详解:从需求到持续优化

    内容概要:本文详细介绍了建设智慧校园平台所需的六个关键步骤。首先通过需求分析深入了解并确定校方和使用者的具体需求;其次是规划设计阶段,依据所得需求制定全面的建设方案。再者是对现有系统的整合——系统集成,确保新旧平台之间的互操作性和数据一致性。培训支持帮助全校教职工和学生快速熟悉新平台,提高效率。实施试点确保系统逐步稳定部署。最后,强调持续改进的重要性,以适应技术和环境变化。通过这一系列有序的工作,可以使智慧校园建设更为科学高效,减少失败风险。 适用人群:教育领域的决策者和技术人员,包括负责信息化建设和运维的团队成员。 使用场景及目标:用于指导高校和其他各级各类学校规划和发展自身的数字校园生态链;目的是建立更加便捷高效的现代化管理模式和服务机制。 其他说明:智慧校园不仅仅是简单的IT设施升级或软件安装,它涉及到全校范围内的流程再造和创新改革。

    AI淘金实战手册:100+高收益变现案例解析

    该文档系统梳理了人工智能技术在商业场景中的落地路径,聚焦内容生产、电商运营、智能客服、数据分析等12个高潜力领域,提炼出100个可操作性变现模型。内容涵盖AI工具开发、API服务收费、垂直场景解决方案、数据增值服务等多元商业模式,每个思路均配备应用场景拆解、技术实现路径及收益测算框架。重点呈现低代码工具应用、现有平台流量复用、细分领域自动化改造三类轻量化启动方案,为创业者提供从技术选型到盈利闭环的全流程参考。

    palkert_3ck_02_0719.pdf

    palkert_3ck_02_0719

    2006-2023年 地级市-克鲁格曼专业化指数.zip

    克鲁格曼专业化指数,最初是由Krugman于1991年提出,用于反映地区间产业结构的差异,也被用来衡量两个地区间的专业化水平,因而又称地区间专业化指数。该指数的计算公式及其含义可以因应用背景和具体需求的不同而有所调整,但核心都是衡量地区间的产业结构差异或专业化程度。 指标 年份、城市、第一产业人数(first_industry1)、第二产业人数(second_industry1)、第三产业人数(third_industry1)、专业化指数(ksi)。

    [AB PLC例程源码][MMS_046305]R2FX.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    精品推荐-通信技术LTE干货资料合集(19份).zip

    精品推荐,通信技术LTE干货资料合集,19份。 LTE PCI网络规划工具.xlsx LTE-S1切换占比专题优化分析报告.docx LTE_TDD问题定位指导书-吞吐量篇.docx LTE三大常见指标优化指导书.xlsx LTE互操作邻区配置核查原则.docx LTE信令流程详解指导书.docx LTE切换问题定位指导一(定位思路和问题现象).docx LTE劣化小区优化指导手册.docx LTE容量优化高负荷小区优化指导书.docx LTE小区搜索过程学习.docx LTE小区级与邻区级切换参数说明.docx LTE差小区处理思路和步骤.docx LTE干扰日常分析介绍.docx LTE异频同频切换.docx LTE弱覆盖问题分析与优化.docx LTE网优电话面试问题-应答技巧.docx LTE网络切换优化.docx LTE高负荷小区容量优化指导书.docx LTE高铁优化之多频组网优化提升“用户感知,网络价值”.docx

    matlab程序代码项目案例:matlab程序代码项目案例matlab中Toolbox中带有的模型预测工具箱.zip

    matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    pepeljugoski_01_0508.pdf

    pepeljugoski_01_0508

    szczepanek_01_0308.pdf

    szczepanek_01_0308

    oif2007.384.01_IEEE.pdf

    oif2007.384.01_IEEE

    stone_3ck_01_0119.pdf

    stone_3ck_01_0119

    oganessyan_01_1107.pdf

    oganessyan_01_1107

Global site tag (gtag.js) - Google Analytics