对Kafka offset的管理,一直没有进行系统的总结,这篇文章对它进行分析。
什么是offset
offset是consumer position,Topic的每个Partition都有各自的offset.
Keeping track of what has been consumed, is, surprisingly, one of the key performance points of a messaging system. Most messaging systems keep metadata about what messages have been consumed on the broker. That is, as a message is handed out to a consumer, the broker either records that fact locally immediately or it may wait for acknowledgement from the consumer. This is a fairly intuitive choice, and indeed for a single machine server it is not clear where else this state could go. Since the data structure used for storage in many messaging systems scale poorly, this is also a pragmatic choice--since the broker knows what is consumed it can immediately delete it, keeping the data size small. What is perhaps not obvious, is that getting the broker and consumer to come into agreement about what has been consumed is not a trivial problem. If the broker records a message as consumed immediately every time it is handed out over the network, then if the consumer fails to process the message (say because it crashes or the request times out or whatever) that message will be lost. To solve this problem, many messaging systems add an acknowledgement feature which means that messages are only marked as sent not consumed when they are sent; the broker waits for a specific acknowledgement from the consumer to record the message as consumed. This strategy fixes the problem of losing messages, but creates new problems. First of all, if the consumer processes the message but fails before it can send an acknowledgement then the message will be consumed twice. The second problem is around performance, now the broker must keep multiple states about every single message (first to lock it so it is not given out a second time, and then to mark it as permanently consumed so that it can be removed). Tricky problems must be dealt with, like what to do with messages that are sent but never acknowledged. Kafka handles this differently. Our topic is divided into a set of totally ordered partitions, each of which is consumed by one consumer at any given time. This means that the position of consumer in each partition is just a single integer, the offset of the next message to consume. This makes the state about what has been consumed very small, just one number for each partition. This state can be periodically checkpointed. This makes the equivalent of message acknowledgements very cheap. There is a side benefit of this decision. A consumer can deliberately rewind back to an old offset and re-consume data. This violates the common contract of a queue, but turns out to be an essential feature for many consumers. For example, if the consumer code has a bug and is discovered after some messages are consumed, the consumer can re-consume those messages once the bug is fixed.
消费者需要自己保留一个offset,从kafka 获取消息时,只拉去当前offset 以后的消息。Kafka 的scala/java 版的client 已经实现了这部分的逻辑,将offset 保存到zookeeper 上
1. auto.offset.reset
What to do when there is no initial offset in ZooKeeper or if an offset is out of range:- smallest : automatically reset the offset to the smallest offset
- largest : automatically reset the offset to the largest offset
- anything else: throw exception to the consumer
如果Kafka没有开启Consumer,只有Producer生产了数据到Kafka中,此后开启Consumer。在这种场景下,将auto.offset.reset设置为largest,那么Consumer会读取不到之前Produce的消息,只有新Produce的消息才会被Consumer消费
2. auto.commit.enable(例如true,表示offset自动提交到Zookeeper)
If true, periodically commit to ZooKeeper the offset of messages already fetched by the consumer. This committed offset will be used when the process fails as the position from which the new consumer will begin
3. auto.commit.interval.ms(例如60000,每隔1分钟offset提交到Zookeeper)
The frequency in ms that the consumer offsets are committed to zookeeper.
问题:如果在一个时间间隔内,没有提交offset,岂不是要重复读了?
4. offsets.storage
Select where offsets should be stored (zookeeper or kafka).默认是Zookeeper
5. 基于offset的重复读
The Kafka consumer works by issuing "fetch" requests to the brokers leading the partitions it wants to consume. The consumer specifies its offset in the log with each request and receives back a chunk of log beginning from that position. The consumer thus has significant control over this position and can rewind it to re-consume data if need be.
6. Kafka的可靠性保证(消息消费和Offset提交的时机决定了At most once和At least once语义)
At Most Once:
At Least Once:
Kafka默认实现了At least once语义
相关推荐
版本1.3.0.8提供了对Kafka集群的可视化监控和管理,包括消费者组管理、主题管理以及offset管理等功能。这个工具使得管理员能够更方便地管理和维护Kafka集群,特别是对于offset值的修改,这是一个非常重要的特性,...
包含Mac 和 windows版本, 可以连接kafka,非常方便的查看topic、consumer、consumer-group 等信息。 1、首先在Properties页签下填写好 zookeeper 地址和端口 2、再从 Advanced页签下填写 broker地址和端口
而"offset kafka监控工具"则是针对Kafka集群进行管理和监控的重要辅助工具,它允许用户查看和管理Kafka主题中的消费偏移量,这对于理解和调试生产者和消费者的同步状态至关重要。 "offset explore"是这类工具的典型...
kafka-0.9.0-重置offset-ResetOff.java;
而Kafka Tool Offset Explorer 2.2则是一款专为Kafka设计的强大工具,它允许用户深入探索并管理Kafka的数据消费进度,提供了对Kafka集群状态的直观理解和控制。本文将详尽解析这款工具的功能、使用方法以及其在实际...
kafka客户端offset kafka客户端offset kafka客户端offset kafka客户端offset kafka客户端offset kafka客户端offset kafka客户端offset kafka客户端offset kafka客户端offset kafka客户端offset kafka客户端offset ...
Spring Boot 集群管理工具 KafkaAdminClient 使用方法解析 KafkaAdminClient 是 Spring Boot 集群管理工具中的一部分,主要用于管理和检视 Kafka 集群中的Topic、Broker、ACL 等对象。下面将详细介绍 Kafka...
offsetExplore2 实际上是 Kafka 的一个工具,用于管理和监控 Apache Kafka 中的偏移量(offset)。在 Kafka 中,偏移量是用来标识消费者在一个特定分区中的位置的标识符,它可以用来记录消费者消费消息的进度。 ...
共有3个安装包: kafka:kafka_2.12-2.8.0.tgz zookeeper:apache-zookeeper-3.7.0-bin.tar.gz kafka可视化工具:offsetexplorer_64bit.exe
总结来说,Kafka-Manager 1.3.3.22是针对Kafka集群管理的重要升级,尤其是对于面临“Unknown offset schema version 3”问题的用户。它不仅提升了与Kafka 2.x的兼容性,还增强了故障排查和集群管理能力。如果你的...
### Apache Flink 如何管理 Kafka 消费者 Offsets #### 一、Flink与Kafka结合实现Checkpointing 在探讨Flink如何管理和利用Kafka消费者Offsets的过程中,首先要理解Flink与Kafka如何共同实现检查点(Checkpointing...
4. **查看与管理Offsets**:Kafkatool允许用户查看每个partition的最小和最大offset,以及consumer group的当前offset。用户还可以手动设置或重置offset,这对于调试和测试是非常有用的。 5. **创建与删除Topic**:...
总结来说,`kafkatool` 是一个强大而实用的 Kafka 管理工具,能够帮助开发者和运维人员更轻松地管理和监控 Kafka 集群,提高工作效率。无论是创建和管理主题、监控消费者组,还是进行数据操作,`kafkatool` 都能提供...
Kafka 管理工具监控偏移量消费 Offset 必备技能 Kafka 是一个流行的分布式流媒体平台,提供了高吞吐量、可持久化的消息队列服务。但是,Kafka 的管理和监控却是一件复杂的事情,需要专业的管理工具和技术。以下是 ...
1. **全面监控**:它能够监控 Kafka 的关键指标,如 Broker 的状态、Topic 的分区分布、Consumer 的消费进度(offset 和 lag)以及 Owner 信息。 2. **直观界面**:Kafka-Eagle 提供了一个友好的 Web UI,使得管理...
为了便于管理和监控Kafka集群,各种可视化工具应运而生,其中就包括我们今天要讨论的“Kafka Tool”。它是一款专为Kafka设计的64位可视化工具,提供了直观易用的界面,帮助用户进行主题管理、消费组监控以及数据迁移...
3. **数据一致性**:理解并正确处理Kafka的分区和offset管理,确保数据处理的准确性和顺序性。 4. **监控和调试**:部署后,持续监控系统的运行状况,及时发现和解决问题。 综上所述,Storm和Kafka的集成提供了一种...
6. **高吞吐量**:Kafka设计的目标是处理大规模的数据流,因此它优化了网络I/O和磁盘I/O,可以实现每秒数十万条消息的处理速度。 7. **连接器(Connectors)和流处理(Kafka Streams)**:Kafka Connect允许用户...
3. **消费者组管理**:显示消费者组的详细信息,包括消费的topic、offset等,有助于排查消费问题。 4. **性能监控**:Kafka Manager提供了实时的生产者和消费者消息流量监控,通过JMX(Java Management Extensions...
在本文中,我们将深入探讨如何在Apache Kafka中配置SASL/PLAIN认证机制,并通过具体的密码验证实现安全的通信...这为保障数据的安全传输提供了基础,同时,了解和实践这些配置将有助于我们更好地理解和管理Kafka系统。