- 浏览: 329818 次
- 性别:
- 来自: 北京
-
文章分类
- 全部博客 (254)
- java (178)
- tomcat (6)
- 邮件 (1)
- smtp (1)
- Linux (2)
- 编码 (2)
- 导入工程 (1)
- Specification Level (1)
- hibernate (10)
- 字段类型 (1)
- 字段类型匹配 (1)
- 数据库 (3)
- sql (9)
- struts2 (8)
- 类型转换 (2)
- java,MyEclipse,SVN (1)
- Myecplise (4)
- 输入校验 (1)
- JFrame (2)
- Oracle (8)
- google (1)
- Swing (3)
- Fusioncharts (1)
- 找工作 (0)
- js (4)
- jsp (11)
- displaytag (1)
- spring (8)
- 工作 (1)
- String (1)
- 算法 (2)
- IO (1)
- xml (3)
- 设计模式 (1)
- UML (1)
- 文档 (1)
- ajax (1)
- 日常 (7)
- sql server (1)
- mysql (3)
- git (1)
- Maven (1)
- mongodb (1)
- postman (1)
最新评论
Spring事务总结:
web.xml文件中加载Spring配置文件路径:
获取数据源:
上面这段代码还可以简化成如下代码:
PropertyPlaceholderConfigurer类和context:property-placeholder元素在spring里面所起的作用是相同的,都是加载常量配置文件,只是context:property-placeholder元素更简化。
事务在软件中扮演了一个重要的角色,用于确保数据和资源永远不会处在一种不一致的状态下。
事务的描述ACID:
原子性:确保在事务中的所有操作要么都发生,要么都不发生。
一致性:数据应当不会被破坏。
隔离性:允许多名用户草组同一个数据,一名用户的操作不会和其他用户的操作相混淆。隔离通常意味着要锁定数据库里的记录行和(或)表。
持久性:一旦事务完成,事务的结果应该持久化。通常把事务的结果保存在数据库中。
如果应用程式只使用单一的持久化资源,那么Spring就可以使用持久化机制本身所提供的事务管理支持。这些持久性机制包括JDBC、
Hibernate、JDO、以及Apache的OJB等。然后,如果应用程序跨越多个资源,那么Spring也可以使用第三方的JTA实现支持分布式事务。
不管你是选择在你的Bean里编写事务还是像切面(Aspect,AOP概念)那样声明他们,你都将使用一个Spring事务管理器连接特定平台的
事务实现。
Spring不直接管理事务,相反,他提供了很多可供选择的事务管理器,将事务管理的责任委托给油JTA或相应的持久性机制锁提供的
某个特定平台事务实现。常用的事务管理器有:
DataSourceTransactionManager、orm.hibernate.HibernateTransactionManager、orm.hibernate3.HibernateTransactionManager等,
详见《Spring in action》P149。
下面在程序上下文中声明事务管理器:
如果使用Hibernate2,那么你就会希望使用HibernateTransactionManager,使用如下XML来申明:
如果使用Hibernate3,那么你就会希望使用HibernateTransactionManager,使用如下XML来申明:
===================================start1==========================================
在Spring类代码中直接编写事务代码:
添加事务的一种方式是,利用Spring的TransactionTemplate,在addRant()方法内直接通过编程来添加事务边界,
在上面一段代码中,要想使用TransactionTemplate,必须从实现TransactionCallback接口开始。由于TransactionCallback只有一
个方法需要实现,因此把它作为一个匿名的内部类来实现通常是最容易的。
这里的TransactionTemplate事例是被注入到RantServiceImpl中的:
================================================end1=======================================================
Spring对声明式事务管理的支持是通过它的AOP框架来实现的。以前,Spring一直通过使用Spring AOP代理Bean来支持声明式事务。
但是Spring2.0增加了两种新的声明式事务:简单的XML声明(XML-declared)事务和注释驱动(annotation-driven)事务。
下面会着重讲解这三种方式:
首先来了解下定义事务参数:
1、传播行为:传播行为定义关于客户端和被调用方法的事务边界。常用参数例如:PROPAGATION_REQUIRES_NEW、PROPAGATION_MANDATORY,
传播行为回答了这样一个问题:就是一个新的事务应该被启动环视被挂起,或者是一个方法是否应该在事务性上下文中运行。
2、隔离级别:定义一个事务可能受其他并发事务活动影响的程度,可以把他想象为那个事务对于事务处理数据的自私程度。
并发导致的问题:赃读、不可重复读、幻读
考虑到完全隔离会影响性能,而且并不是所有应用程序都要求完全隔离,所以有时可以在事务隔离方面灵活处理,所以就会有好几个
隔离级别,常用的有:ISOLATION_DEFAULT、ISOLATION_READ_UNCOMMITTED
3、只读:如果一个事务支队后端数据库执行读操作,那么该数据库就可能可以利用那个事务的只读特性,采取某些优化措施。通过
把一个事务声明为只读,可以给后端数据库一个机会来应对哪些它认为合适的优化措施。
4、事务超时:你可以声明一个事务,在特定秒数之后自动回滚,而不必等它自己结束。只对那些可能开启新事务的传播行为才有意义。
5、回滚规则:他们定义那些异常引起回滚,那些不引起。不过,你可以声明一个事务在出现特定的受阻异常时像运行时异常一样回滚。
同样,你可以声明一个事务在出现特定的异常时不回滚,即使那些异常是运行时异常。
===========================================start方式1===============================================
在2.0之前的Spring版本中,声明式事务管理通过使用Spring的TransactionProxyFactoryBean代理POJO来完成。
TransactionProxyFactoryBean是ProxyFactoryBean的一个特化,它知道如何通过用事务性边界包裹一个POJO的方法来处理它们。
下面展示可以怎样声明一个包裹RantServiceImpl类的TransactionProxyFactoryBean:
这意味着TransactionProxyFactoryBean生成的那个代理必须伪装成一个rant服务。那正是proxyInterfaces属性的目的。
这里我们正在告诉TransactionProxyFactoryBean,生成一个实现RantService接口的代理。
这个transactionAttributes属性值的一提,它声明哪些方法将在一个事务内执行,以及相应的事务参数将是什么。具体详见
《Spring in action》P159。
如果采用上面的方式,使用TransactionProxyFactoryBean代理单个服务Bean没问题。但是如果应用程序中有多个服务Bean,而且它
们都必须在事务中处理,那么该怎么办呢?一个一个写?啰嗦死你。
幸运的是,你不必那样做。利用Spring的功能,创建抽象Bean和“子Bean”,即可在一个位置定义事务策略,然后把他们重复应用到
所有的服务Bean(这种方式比上一种方式更简洁)。
下面首先创建TransactionProxyFactoryBean的一个抽象声明(创建事务管理服务的一个代理抽象声明):
有了这个抽象的TransactionProxyFactoryBean声明,现在通过把txProxyTemplate用作相应bean的父声明,就可以使得任意数量的
bean事务化了。比如下面这段XML为这里的rant服务扩展txProxyTemplate:
===========================================end方式1===============================================
===========================================start方式2===============================================
TransactionProxyFactoryBean的问题是,使用它会导致极其冗长的Spring配置文件。
好消息是Spring2.0专门为声明式事务提供了一些新的配置元素。这些元素位于tx名称空间,而且可以通过向你的Spring配置XML文件
添加spring-tx-2.0.xsd模式来使用:
这个tx名称空间提供少量新的XML配置元素,其中最值得注意的是<tx:advice>元素。下列XML片段演示如何使用<tx:advice>来声明
事务性策略:
<tx:method>有几个参数,有助于为指定的方法定义事务策略,具体参数及说明见《Spring in Action》P161
在使用<tx:advice>声明一个事务时,你仍将需要一个事务管理器,就像是使用TransactionProxyFactoryBean时那样。根据配置
惯例,<tx:advice>假定事务管理器会被声明为一个id为transactionManager的Bean,如果你们事务管理器确实叫这个名称的话
那就不用再手动配置了,系统默认就找这个名称的事务管理器。如果你碰巧给你的事务管理器赋予了一个
不同的id(比如说,txManager),那么你将需要在transactionmanager参数中指定这个事务管理器的id。
上面使用<tx:advice>定义了事务通知,不是一个完整的事务性切面。我们还需要在<tx:advice>中指出哪些Bean应该被通知--我们
需要一个用于该项工作的切入点(Point)。下面定义一个通知器(advisor)作为切入点,它利用这里的txAdvice通知来通知实现
RantService接口的所有Bean:
这里的pointcot参数使用一个AspectJ切入点表达式来指出,这个通知器应该通知RantService接口的所有方法。
===========================================end方式2===============================================
===========================================start方式3===============================================
<tx:advice>元素大大简化了Spring中声明式事务所需的XML。但是假如采用注解的方式还能更简化,你乐意不?
实际上你只需要向你的Spring上下文增加一行XML,即可声明事务。
声明采用注解来实现事务处理:
<tx:annotation-driven transaction-manager="txManager"/>
(事务管理器参数transaction-manager的默认值为transactionManager,如果自己的事务管理器配置的就叫transactionManager,
那么就不需要在这里配置这个参数来指定事务管理器了。而如果不叫这个,就必须在这里使用这个参数来声明事务管理器了)
<tx:annotation-driven>配置元素告诉Spring在类层面或者是方法层面检查应用程序上下文中的所有Bean,并且寻找标注了
@Transactional的Bean。对于每一个标注了@Transactional的Bean,<tx:annotation-driven>将自动把事务通知的内容通知
给它。这个通知的事务参数将由@Transactional注释的参数来定义。
例如(注释那个要事务化的rant服务):
在类层面上,RantServiceImpl已经被标注了一个@Transactional注释,说明所有方法都将支持事务并且是只读的。
可能有意思的是,@Transactional注释也可以被应用到一个接口上。例如:
通过注释RantService而不是RantServiceImpl,可以指明RantService的所有实现都应该被事务化。
===========================================end方式3===============================================
mongo是没有事务一说的,比如说系统里的一个写的事务,针对大白库有写的操作,在进入service的时候会给它分配写库的连接,这个service里会给大白写库的某个表录入一条数据,同时也会给mongo库里的某个表了录入一条数据,假如这个service中途抛异常了,那么针对mysql录入的那条数据不会做commit操作,会callback,所以这条数据最终不会入库,但是针对mongo库录入的那条数据不会回滚了,mongo没有事务一说。
spring的声明式事务是针对整个方法来说的,例如系统里面的一个写的事务,连接的大白的写库,会在写库里某个表录入一条数据,并且往某个文件里面io写一些文字内容,并且里面也有mongo库的操作,会往mongo某个表里录入一条数据,一旦抛出异常,操作大白写库的操作会回滚,操作mongo库的操作肯定是回滚不了了,即使事务失败了mongo里面也会多出来一条数据,往文件里面写数据这个不知道是否能回滚,我自己想的应该是回滚不了,写进去就写进去了,因为针对数据库的操作可以在真正事务commit的时候再实际操作变更数据库,而针对文件的io操作没有这种事务的commit机制啊,它只有要么操作,要么不操作,没有说等会再操作。当然这种情况可以自己试下!
只有写的数据库连接才会涉及到事务,有commit和collback一说,读的数据库连接不会涉及到事务,读出来就读出来了,对原有数据不会有影响。
自己测试操作的结果:
在读库事务的service方法中可以有写操作,也就是在读库事务中同样可以操作写库,读写库各一个事务,互不影响。
读写库:
一个service方法被匹配到哪个库上的事务配置,到这个service方法里就会针对这个库相关的所有session操作做事务控制,针对其它库的操作是不受事务控制的,针对当前这个service方法
匹配到的事务对应的库的所有数据库连接(session)用的应该都是同一个,同一个session
重点示例:
1、在findB() service方法中调用saveA()方法。假如当前这个方法被匹配到的事务(读库事务)声明了只读(read-only),那么在这个方法里只有针对这个库相关的连接操作只读,针对其它库
的连接操作(例如调用写库的saveB() service方法)还是可以照常执行的,事务的传播级别是针对同一个库的不同事务而言的,这里不同的库不受事务的传播级别影响,所以肯定不会沿用原来
那个事务(也用不了,因为不是同一个库的事务),所以这里操作写库还会自动开启针对写库的事务,并且出问题了自动回滚。假如这里的读操作出问题了,写操作没有问题,而且写库的操作
代码在出问题代码前边,也就是说写库的代码已经执行完了才出的问题,那么读库的事务会回滚,针对写库的操作会正常执行(如果写库的代码在出问题代码的后边,也就是说写库的代码根本
没执行就出问题了,那么写的操作最后也是不会执行的,相当于还没开启写的事务呢就出问题了)。就是这么个结果。
2、在一个saveA() 的service方法中,根据这个方法名称会匹配到它受写库的事务控制,也就是说这个service方法里凡是通过获取写库连接去对写库做操作的地方都会受事务控制,也就是
这个方法里针对写库sessionFactory给分配的session受事务控制,而且应该用的都是同一个session,正是通过分配的session去做的事务控制。我猜的没错的话,所有这个方法里对写库的
操作系统会控制sessionFactory给他们分配的session应该是同一个session,以此来方便控制事务。而如果这个方法里出现操作读库的例如findB()的service方法的调用的话,由于操作这个
读库的操作与鉴定这个方法受事务保护(写库事务)对应的那个库不是同一个库。所以针对这个读库的操作系统会重新开启针对读库的事务,并且这个读库的事务和写库的事务完全没有一毛钱
的关系,相互直接根本不会有事务传播级别相关的关系,而且在这个方法里面针对读库的session应该用的都是同一个(用的都是同一个读库的数据库连接,和写库那个是完全区分开的)。
也即是说这一个方法里现在包含了针对两个不同的库的两个不同的事务,这两个事务相互没有任何关系,也不会有任何影响。如果读事务出现问题了,会回滚,但是不会影响写事务,只要是写
的代码被执行了,那么写事务提交的时候就会正常执行。如果写事务出现问题了,会回滚,但是不会影响读事务。但是话说回来,好像针对读库的事务没有太大的意义,失不失败它都能正常
的读出数据来,不知道咱们系统里面配置这个有什么意义。这里是对现有大白系统做读写分离的一个解说
事务控制是在同一个库的同一个数据库连接上做的,而针对不同的数据库,不可能使用同一个数据库连接,所以针对不同的数据库,不可能在同一个事务里面控制,只能是不同的数据库
操作在不同的事务里面进行。而且所谓的事务传播级别也不可能在不同的数据库事务之间进行生效传递,只对同一个数据库里的事务才生效,才可以传递。
事务是通过session控制事务的,不是这个session对应的库的连接就不受这个事务控制。当然调用其他库的操作的方法有可能会新开启事务,和当前这个方法对应的事务完全没有任何关系。
事务的传播级别是针对同一个库的事务而言的,不同的库之间的事务没有任何关系,而且不同的库之间的事务也不会有传播级别这么一说,不同库之间的事务根本不能复用,因为里面包含的
数据库连接指向的数据库都不是同一个。
注意:针对那种一个service方法里有io文件读写操作的,或者比如异步开启一个定时任务这种,在事务回滚的时候,这种非数据库操作的各种类型的操作会回滚吗???这个可以试一下!!!!
注意:针对那种比如一个service方法里面有两个不同的mysql库的操作的这种,如果中间抛出异常了,这个两个库的操作都会回滚是吗???这个需要自己试一下,不知道!!!
注意:假如一个service方法里的数据库操作做了try catch捕获操作了,假如抛异常了,在catch里自己处理了,外面的service层感知不到,这种的事务会回滚吗??spring配置的事务是遇到异常就回滚吗?还是说只是针对service层能感知到的已经跑出到service层的异常才会回滚????这个需要自己试一下!!
spring里面事务的传播属性和事务隔离级别
一、Propagation (事务的传播属性)
Propagation : key属性确定代理应该给哪个方法增加事务行为。这样的属性最重要的部份是传播行为。有以下选项可供使用:
PROPAGATION_REQUIRED--支持当前事务,如果当前没有事务,就新建一个事务。这是最常见的选择。
PROPAGATION_SUPPORTS--支持当前事务,如果当前没有事务,就以非事务方式执行。
PROPAGATION_MANDATORY--支持当前事务,如果当前没有事务,就抛出异常。
PROPAGATION_REQUIRES_NEW--新建事务,如果当前存在事务,把当前事务挂起。
PROPAGATION_NOT_SUPPORTED--以非事务方式执行操作,如果当前存在事务,就把当前事务挂起。
PROPAGATION_NEVER--以非事务方式执行,如果当前存在事务,则抛出异常。
1: PROPAGATION_REQUIRED
加入当前正要执行的事务不在另外一个事务里,那么就起一个新的事务
比如说,ServiceB.methodB的事务级别定义为PROPAGATION_REQUIRED, 那么由于执行ServiceA.methodA的时候,
ServiceA.methodA已经起了事务,这时调用ServiceB.methodB,ServiceB.methodB看到自己已经运行在ServiceA.methodA的事务内部,就不再起新的事务。而假如ServiceA.methodA运行的时候发现自己没有在事务中,他就会为自己分配一个事务。这样,在ServiceA.methodA或者在ServiceB.methodB内的任何地方出现异常,事务都会被回滚。即使ServiceB.methodB的事务已经被提交,但是ServiceA.methodA在接下来fail要回滚,ServiceB.methodB也要回滚
2: PROPAGATION_SUPPORTS
如果当前在事务中,即以事务的形式运行,如果当前不再一个事务中,那么就以非事务的形式运行
3: PROPAGATION_MANDATORY
必须在一个事务中运行。也就是说,他只能被一个父事务调用。否则,他就要抛出异常
4: PROPAGATION_REQUIRES_NEW
这个就比较绕口了。 比如我们设计ServiceA.methodA的事务级别为PROPAGATION_REQUIRED,ServiceB.methodB的事务级别为PROPAGATION_REQUIRES_NEW,那么当执行到ServiceB.methodB的时候,ServiceA.methodA所在的事务就会挂起,ServiceB.methodB会起一个新的事务,等待ServiceB.methodB的事务完成以后,他才继续执行。他与PROPAGATION_REQUIRED 的事务区别在于事务的回滚程度了。因为ServiceB.methodB是新起一个事务,那么就是存在两个不同的事务。如果ServiceB.methodB已经提交,那么ServiceA.methodA失败回滚,ServiceB.methodB是不会回滚的。如果ServiceB.methodB失败回滚,如果他抛出的异常被ServiceA.methodA捕获,ServiceA.methodA事务仍然可能提交。
5: PROPAGATION_NOT_SUPPORTED
当前不支持事务。比如ServiceA.methodA的事务级别是PROPAGATION_REQUIRED ,而ServiceB.methodB的事务级别是PROPAGATION_NOT_SUPPORTED ,那么当执行到ServiceB.methodB时,ServiceA.methodA的事务挂起,而他以非事务的状态运行完,再继续ServiceA.methodA的事务。
6: PROPAGATION_NEVER
不能在事务中运行。假设ServiceA.methodA的事务级别是PROPAGATION_REQUIRED, 而ServiceB.methodB的事务级别是PROPAGATION_NEVER ,那么ServiceB.methodB就要抛出异常了。
7: PROPAGATION_NESTED
理解Nested的关键是savepoint。他与PROPAGATION_REQUIRES_NEW的区别是,PROPAGATION_REQUIRES_NEW另起一个事务,将会与他的父事务相互独立,而Nested的事务和他的父事务是相依的,他的提交是要等和他的父事务一块提交的。也就是说,如果父事务最后回滚,他也要回滚的。
二、Isolation Level(事务隔离等级):
1、Serializable:最严格的级别,事务串行执行,资源消耗最大;
2、REPEATABLE READ:保证了一个事务不会修改已经由另一个事务读取但未提交(回滚)的数据。避免了“脏读取”和“不可重复读取”的情况,但是带来了更多的性能损失。
3、READ COMMITTED:大多数主流数据库的默认事务等级,保证了一个事务不会读到另一个并行事务已修改但未提交的数据,避免了“脏读取”。该级别适用于大多数系统。
4、Read Uncommitted:保证了读取过程中不会读取到非法数据。隔离级别在于处理多事务的并发问题。
我们知道并行可以提高数据库的吞吐量和效率,但是并不是所有的并发事务都可以并发运行,这需要查看数据库教材的可串行化条件判断了。这里就不阐述。
我们首先说并发中可能发生的3中不讨人喜欢的事情
1: Dirty reads--读脏数据。也就是说,比如事务A的未提交(还依然缓存)的数据被事务B读走,如果事务A失败回滚,会导致事务B所读取的的数据是错误的。
2: non-repeatable reads--数据不可重复读。比如事务A中两处读取数据-total-的值。在第一读的时候,total是100,然后事务B就把total的数据改成 200,事务A再读一次,结果就发现,total竟然就变成200了,造成事务A数据混乱。
3: phantom reads--幻象读数据,这个和non-repeatable reads相似,也是同一个事务中多次读不一致的问题。但是non-repeatable reads的不一致是因为他所要取的数据集被改变了(比如total的数据),但是phantom reads所要读的数据的不一致却不是他所要读的数据集改变,而是他的条件数据集改变。比如Select account.id where account.name="ppgogo*",第一次读去了6个符合条件的id,第二次读取的时候,由于事务b把一个帐号的名字由"dd"改成"ppgogo1",结果取出来了7个数据。
三、readOnly
事务属性中的readOnly标志表示对应的事务应该被最优化为只读事务。
这是一个最优化提示。在一些情况下,一些事务策略能够起到显著的最优化效果,例如在使用Object/Relational映射工具(如:Hibernate或TopLink)时避免dirty checking(试图“刷新”)。
四、Timeout
在事务属性中还有定义“timeout”值的选项,指定事务超时为几秒。在JTA中,这将被简单地传递到J2EE服务器的事务协调程序,并据此得到相应的解释
web.xml文件中加载Spring配置文件路径:
<!--加载spring文件--> <context-param> <param-name>contextConfigLocation</param-name> <param-value>classpath*:spring/*.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener>
获取数据源:
<!--常量配置文件读入--> <bean id="propertyConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> <property name="locations"> <list> <value>classpath*:config/jdbc.properties</value> <value>classpath*:config/hibernate.properties</value> <value>classpath*:config/mail.properties</value> </list> </property> </bean>
上面这段代码还可以简化成如下代码:
<context:property-placeholder location="classpath:config/hibernate.properties" />
PropertyPlaceholderConfigurer类和context:property-placeholder元素在spring里面所起的作用是相同的,都是加载常量配置文件,只是context:property-placeholder元素更简化。
事务在软件中扮演了一个重要的角色,用于确保数据和资源永远不会处在一种不一致的状态下。
事务的描述ACID:
原子性:确保在事务中的所有操作要么都发生,要么都不发生。
一致性:数据应当不会被破坏。
隔离性:允许多名用户草组同一个数据,一名用户的操作不会和其他用户的操作相混淆。隔离通常意味着要锁定数据库里的记录行和(或)表。
持久性:一旦事务完成,事务的结果应该持久化。通常把事务的结果保存在数据库中。
如果应用程式只使用单一的持久化资源,那么Spring就可以使用持久化机制本身所提供的事务管理支持。这些持久性机制包括JDBC、
Hibernate、JDO、以及Apache的OJB等。然后,如果应用程序跨越多个资源,那么Spring也可以使用第三方的JTA实现支持分布式事务。
不管你是选择在你的Bean里编写事务还是像切面(Aspect,AOP概念)那样声明他们,你都将使用一个Spring事务管理器连接特定平台的
事务实现。
Spring不直接管理事务,相反,他提供了很多可供选择的事务管理器,将事务管理的责任委托给油JTA或相应的持久性机制锁提供的
某个特定平台事务实现。常用的事务管理器有:
DataSourceTransactionManager、orm.hibernate.HibernateTransactionManager、orm.hibernate3.HibernateTransactionManager等,
详见《Spring in action》P149。
下面在程序上下文中声明事务管理器:
<bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <property name="dataSource" ref="dataSource"/> </bean>
如果使用Hibernate2,那么你就会希望使用HibernateTransactionManager,使用如下XML来申明:
<bean id="transactionManager" class="oag.springframework.orm.hibernate.HibernateTransactionManager"> <property name="sessionFactory" ref="sessionFactory"/> </bean>
如果使用Hibernate3,那么你就会希望使用HibernateTransactionManager,使用如下XML来申明:
<bean id="transactionManager" class="oag.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory" ref="sessionFactory"/> </bean>
===================================start1==========================================
在Spring类代码中直接编写事务代码:
添加事务的一种方式是,利用Spring的TransactionTemplate,在addRant()方法内直接通过编程来添加事务边界,
public void addRant(Rant rant) { transactionTemplate.execute( new TransactionCallback() { public Object doInTransaction(TransactionStatus ts) { try { rant.setPostedDate(new Date()); Vehicle existingVehicle = rantDao.findVehicleByPlate(rantVehicle.getState(),rantVehicle.getPlateNumber()); if (existingVehicle != null) { rant.setVehicle(existingVehicle); } else { rantDao.saveVehicle(rantVehicle); } rantDao.saveRant(rant); } catch (Exception e) { ts.setRollbackOnly(); } return null; } } }
在上面一段代码中,要想使用TransactionTemplate,必须从实现TransactionCallback接口开始。由于TransactionCallback只有一
个方法需要实现,因此把它作为一个匿名的内部类来实现通常是最容易的。
这里的TransactionTemplate事例是被注入到RantServiceImpl中的:
<bean id="rantService" class="com.roadrantz.service.RantServiceImpl"> ... <property name="transactionTemplate"> <bean class="org.springframework.transaction.support.TransactionTemplate"> <property name="transactionManager" ref="transactionManager"/> </bean> </property> <bean/>
================================================end1=======================================================
Spring对声明式事务管理的支持是通过它的AOP框架来实现的。以前,Spring一直通过使用Spring AOP代理Bean来支持声明式事务。
但是Spring2.0增加了两种新的声明式事务:简单的XML声明(XML-declared)事务和注释驱动(annotation-driven)事务。
下面会着重讲解这三种方式:
首先来了解下定义事务参数:
1、传播行为:传播行为定义关于客户端和被调用方法的事务边界。常用参数例如:PROPAGATION_REQUIRES_NEW、PROPAGATION_MANDATORY,
传播行为回答了这样一个问题:就是一个新的事务应该被启动环视被挂起,或者是一个方法是否应该在事务性上下文中运行。
2、隔离级别:定义一个事务可能受其他并发事务活动影响的程度,可以把他想象为那个事务对于事务处理数据的自私程度。
并发导致的问题:赃读、不可重复读、幻读
考虑到完全隔离会影响性能,而且并不是所有应用程序都要求完全隔离,所以有时可以在事务隔离方面灵活处理,所以就会有好几个
隔离级别,常用的有:ISOLATION_DEFAULT、ISOLATION_READ_UNCOMMITTED
3、只读:如果一个事务支队后端数据库执行读操作,那么该数据库就可能可以利用那个事务的只读特性,采取某些优化措施。通过
把一个事务声明为只读,可以给后端数据库一个机会来应对哪些它认为合适的优化措施。
4、事务超时:你可以声明一个事务,在特定秒数之后自动回滚,而不必等它自己结束。只对那些可能开启新事务的传播行为才有意义。
5、回滚规则:他们定义那些异常引起回滚,那些不引起。不过,你可以声明一个事务在出现特定的受阻异常时像运行时异常一样回滚。
同样,你可以声明一个事务在出现特定的异常时不回滚,即使那些异常是运行时异常。
===========================================start方式1===============================================
在2.0之前的Spring版本中,声明式事务管理通过使用Spring的TransactionProxyFactoryBean代理POJO来完成。
TransactionProxyFactoryBean是ProxyFactoryBean的一个特化,它知道如何通过用事务性边界包裹一个POJO的方法来处理它们。
下面展示可以怎样声明一个包裹RantServiceImpl类的TransactionProxyFactoryBean:
<!--为target生成一个代理,通过代理调用目标方法--> <bean id="rantService" class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean"> <!--装配事务目标,目标为rantServiceTarget,指向RantServiceImplBean。需要把RantServiceImplBean声明Bean时的名称 修改为rantServiceTarget--> <property name="target" ref="rantServiceTarget"/> <!--指定代理接口。生成的代理要实现的接口--> <property name="proxyInterfaces" value="com.roadrantz.service.RantService"/> <!--装配进事务管理器,配置前面提到的任意一个事务管理器都行。--> <property name="transactionManager" ref="transactionManager"/> <!--配置事务规则、边界,事务规则的相关参数--> <property name="transactionAttributes"> <props> <prop key="add*">PROPAGATION_REQUIRED</prop> <prop key="*">PROPAGATION_SUPPORTS,readOnly</prop> </props> </property> </bean>
这意味着TransactionProxyFactoryBean生成的那个代理必须伪装成一个rant服务。那正是proxyInterfaces属性的目的。
这里我们正在告诉TransactionProxyFactoryBean,生成一个实现RantService接口的代理。
这个transactionAttributes属性值的一提,它声明哪些方法将在一个事务内执行,以及相应的事务参数将是什么。具体详见
《Spring in action》P159。
如果采用上面的方式,使用TransactionProxyFactoryBean代理单个服务Bean没问题。但是如果应用程序中有多个服务Bean,而且它
们都必须在事务中处理,那么该怎么办呢?一个一个写?啰嗦死你。
幸运的是,你不必那样做。利用Spring的功能,创建抽象Bean和“子Bean”,即可在一个位置定义事务策略,然后把他们重复应用到
所有的服务Bean(这种方式比上一种方式更简洁)。
下面首先创建TransactionProxyFactoryBean的一个抽象声明(创建事务管理服务的一个代理抽象声明):
<bean id="txProxyTemplate" class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean" abstract="true"> <property name="transactionManager" ref="transactionManager"/> <property name="transactionAttributes"> <props> <prop key="add*">PROPAGATION_REQUIRED</prop> <prop key="*">PROPAGATION_SUPPORTS,readOnly</prop> </props> </property> </bean>
有了这个抽象的TransactionProxyFactoryBean声明,现在通过把txProxyTemplate用作相应bean的父声明,就可以使得任意数量的
bean事务化了。比如下面这段XML为这里的rant服务扩展txProxyTemplate:
<bean id="rantService" parent="txProxyTemplate"> <property name="target" ref="rantServiceTarget"/> <property name="proxyINterfaces" value="com.roadrantz.service.RantService"/> </bean>
===========================================end方式1===============================================
===========================================start方式2===============================================
TransactionProxyFactoryBean的问题是,使用它会导致极其冗长的Spring配置文件。
好消息是Spring2.0专门为声明式事务提供了一些新的配置元素。这些元素位于tx名称空间,而且可以通过向你的Spring配置XML文件
添加spring-tx-2.0.xsd模式来使用:
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.0.xsd">
这个tx名称空间提供少量新的XML配置元素,其中最值得注意的是<tx:advice>元素。下列XML片段演示如何使用<tx:advice>来声明
事务性策略:
<tx:advice id="txAdvice" transaction-manager="txManager"> <tx:attributes> <tx:method name="add*" propagation="REQUIRED"/> <tx:method name="*" propagation="SUPPORTS" read-only="true"/> </tx:attributes> </tx:advice>
<tx:method>有几个参数,有助于为指定的方法定义事务策略,具体参数及说明见《Spring in Action》P161
在使用<tx:advice>声明一个事务时,你仍将需要一个事务管理器,就像是使用TransactionProxyFactoryBean时那样。根据配置
惯例,<tx:advice>假定事务管理器会被声明为一个id为transactionManager的Bean,如果你们事务管理器确实叫这个名称的话
那就不用再手动配置了,系统默认就找这个名称的事务管理器。如果你碰巧给你的事务管理器赋予了一个
不同的id(比如说,txManager),那么你将需要在transactionmanager参数中指定这个事务管理器的id。
上面使用<tx:advice>定义了事务通知,不是一个完整的事务性切面。我们还需要在<tx:advice>中指出哪些Bean应该被通知--我们
需要一个用于该项工作的切入点(Point)。下面定义一个通知器(advisor)作为切入点,它利用这里的txAdvice通知来通知实现
RantService接口的所有Bean:
<aop:config> <aop:advisor pointcut="execution(* *..RantService.*(..))" advice-ref="txAdvice"/> </aop:config>
这里的pointcot参数使用一个AspectJ切入点表达式来指出,这个通知器应该通知RantService接口的所有方法。
===========================================end方式2===============================================
===========================================start方式3===============================================
<tx:advice>元素大大简化了Spring中声明式事务所需的XML。但是假如采用注解的方式还能更简化,你乐意不?
实际上你只需要向你的Spring上下文增加一行XML,即可声明事务。
声明采用注解来实现事务处理:
<tx:annotation-driven transaction-manager="txManager"/>
(事务管理器参数transaction-manager的默认值为transactionManager,如果自己的事务管理器配置的就叫transactionManager,
那么就不需要在这里配置这个参数来指定事务管理器了。而如果不叫这个,就必须在这里使用这个参数来声明事务管理器了)
<tx:annotation-driven>配置元素告诉Spring在类层面或者是方法层面检查应用程序上下文中的所有Bean,并且寻找标注了
@Transactional的Bean。对于每一个标注了@Transactional的Bean,<tx:annotation-driven>将自动把事务通知的内容通知
给它。这个通知的事务参数将由@Transactional注释的参数来定义。
例如(注释那个要事务化的rant服务):
@Transactional(propagation=Propagation.SUPPORTS,readOnly=true) public class RantServiceImpl implements RantService { ... @Transactional(propagation=Propagation.REQUIRED,readOnly=false) public void addRant(Rant rant) { ... } ... }
在类层面上,RantServiceImpl已经被标注了一个@Transactional注释,说明所有方法都将支持事务并且是只读的。
可能有意思的是,@Transactional注释也可以被应用到一个接口上。例如:
@Transactional(propagation=Propagation.SUPPORTS,readOnly=true) public interface RantService { ... void addRant(Rant rant); ... }
通过注释RantService而不是RantServiceImpl,可以指明RantService的所有实现都应该被事务化。
===========================================end方式3===============================================
mongo是没有事务一说的,比如说系统里的一个写的事务,针对大白库有写的操作,在进入service的时候会给它分配写库的连接,这个service里会给大白写库的某个表录入一条数据,同时也会给mongo库里的某个表了录入一条数据,假如这个service中途抛异常了,那么针对mysql录入的那条数据不会做commit操作,会callback,所以这条数据最终不会入库,但是针对mongo库录入的那条数据不会回滚了,mongo没有事务一说。
spring的声明式事务是针对整个方法来说的,例如系统里面的一个写的事务,连接的大白的写库,会在写库里某个表录入一条数据,并且往某个文件里面io写一些文字内容,并且里面也有mongo库的操作,会往mongo某个表里录入一条数据,一旦抛出异常,操作大白写库的操作会回滚,操作mongo库的操作肯定是回滚不了了,即使事务失败了mongo里面也会多出来一条数据,往文件里面写数据这个不知道是否能回滚,我自己想的应该是回滚不了,写进去就写进去了,因为针对数据库的操作可以在真正事务commit的时候再实际操作变更数据库,而针对文件的io操作没有这种事务的commit机制啊,它只有要么操作,要么不操作,没有说等会再操作。当然这种情况可以自己试下!
只有写的数据库连接才会涉及到事务,有commit和collback一说,读的数据库连接不会涉及到事务,读出来就读出来了,对原有数据不会有影响。
自己测试操作的结果:
在读库事务的service方法中可以有写操作,也就是在读库事务中同样可以操作写库,读写库各一个事务,互不影响。
读写库:
一个service方法被匹配到哪个库上的事务配置,到这个service方法里就会针对这个库相关的所有session操作做事务控制,针对其它库的操作是不受事务控制的,针对当前这个service方法
匹配到的事务对应的库的所有数据库连接(session)用的应该都是同一个,同一个session
重点示例:
1、在findB() service方法中调用saveA()方法。假如当前这个方法被匹配到的事务(读库事务)声明了只读(read-only),那么在这个方法里只有针对这个库相关的连接操作只读,针对其它库
的连接操作(例如调用写库的saveB() service方法)还是可以照常执行的,事务的传播级别是针对同一个库的不同事务而言的,这里不同的库不受事务的传播级别影响,所以肯定不会沿用原来
那个事务(也用不了,因为不是同一个库的事务),所以这里操作写库还会自动开启针对写库的事务,并且出问题了自动回滚。假如这里的读操作出问题了,写操作没有问题,而且写库的操作
代码在出问题代码前边,也就是说写库的代码已经执行完了才出的问题,那么读库的事务会回滚,针对写库的操作会正常执行(如果写库的代码在出问题代码的后边,也就是说写库的代码根本
没执行就出问题了,那么写的操作最后也是不会执行的,相当于还没开启写的事务呢就出问题了)。就是这么个结果。
2、在一个saveA() 的service方法中,根据这个方法名称会匹配到它受写库的事务控制,也就是说这个service方法里凡是通过获取写库连接去对写库做操作的地方都会受事务控制,也就是
这个方法里针对写库sessionFactory给分配的session受事务控制,而且应该用的都是同一个session,正是通过分配的session去做的事务控制。我猜的没错的话,所有这个方法里对写库的
操作系统会控制sessionFactory给他们分配的session应该是同一个session,以此来方便控制事务。而如果这个方法里出现操作读库的例如findB()的service方法的调用的话,由于操作这个
读库的操作与鉴定这个方法受事务保护(写库事务)对应的那个库不是同一个库。所以针对这个读库的操作系统会重新开启针对读库的事务,并且这个读库的事务和写库的事务完全没有一毛钱
的关系,相互直接根本不会有事务传播级别相关的关系,而且在这个方法里面针对读库的session应该用的都是同一个(用的都是同一个读库的数据库连接,和写库那个是完全区分开的)。
也即是说这一个方法里现在包含了针对两个不同的库的两个不同的事务,这两个事务相互没有任何关系,也不会有任何影响。如果读事务出现问题了,会回滚,但是不会影响写事务,只要是写
的代码被执行了,那么写事务提交的时候就会正常执行。如果写事务出现问题了,会回滚,但是不会影响读事务。但是话说回来,好像针对读库的事务没有太大的意义,失不失败它都能正常
的读出数据来,不知道咱们系统里面配置这个有什么意义。这里是对现有大白系统做读写分离的一个解说
事务控制是在同一个库的同一个数据库连接上做的,而针对不同的数据库,不可能使用同一个数据库连接,所以针对不同的数据库,不可能在同一个事务里面控制,只能是不同的数据库
操作在不同的事务里面进行。而且所谓的事务传播级别也不可能在不同的数据库事务之间进行生效传递,只对同一个数据库里的事务才生效,才可以传递。
事务是通过session控制事务的,不是这个session对应的库的连接就不受这个事务控制。当然调用其他库的操作的方法有可能会新开启事务,和当前这个方法对应的事务完全没有任何关系。
事务的传播级别是针对同一个库的事务而言的,不同的库之间的事务没有任何关系,而且不同的库之间的事务也不会有传播级别这么一说,不同库之间的事务根本不能复用,因为里面包含的
数据库连接指向的数据库都不是同一个。
注意:针对那种一个service方法里有io文件读写操作的,或者比如异步开启一个定时任务这种,在事务回滚的时候,这种非数据库操作的各种类型的操作会回滚吗???这个可以试一下!!!!
注意:针对那种比如一个service方法里面有两个不同的mysql库的操作的这种,如果中间抛出异常了,这个两个库的操作都会回滚是吗???这个需要自己试一下,不知道!!!
注意:假如一个service方法里的数据库操作做了try catch捕获操作了,假如抛异常了,在catch里自己处理了,外面的service层感知不到,这种的事务会回滚吗??spring配置的事务是遇到异常就回滚吗?还是说只是针对service层能感知到的已经跑出到service层的异常才会回滚????这个需要自己试一下!!
spring里面事务的传播属性和事务隔离级别
一、Propagation (事务的传播属性)
Propagation : key属性确定代理应该给哪个方法增加事务行为。这样的属性最重要的部份是传播行为。有以下选项可供使用:
PROPAGATION_REQUIRED--支持当前事务,如果当前没有事务,就新建一个事务。这是最常见的选择。
PROPAGATION_SUPPORTS--支持当前事务,如果当前没有事务,就以非事务方式执行。
PROPAGATION_MANDATORY--支持当前事务,如果当前没有事务,就抛出异常。
PROPAGATION_REQUIRES_NEW--新建事务,如果当前存在事务,把当前事务挂起。
PROPAGATION_NOT_SUPPORTED--以非事务方式执行操作,如果当前存在事务,就把当前事务挂起。
PROPAGATION_NEVER--以非事务方式执行,如果当前存在事务,则抛出异常。
1: PROPAGATION_REQUIRED
加入当前正要执行的事务不在另外一个事务里,那么就起一个新的事务
比如说,ServiceB.methodB的事务级别定义为PROPAGATION_REQUIRED, 那么由于执行ServiceA.methodA的时候,
ServiceA.methodA已经起了事务,这时调用ServiceB.methodB,ServiceB.methodB看到自己已经运行在ServiceA.methodA的事务内部,就不再起新的事务。而假如ServiceA.methodA运行的时候发现自己没有在事务中,他就会为自己分配一个事务。这样,在ServiceA.methodA或者在ServiceB.methodB内的任何地方出现异常,事务都会被回滚。即使ServiceB.methodB的事务已经被提交,但是ServiceA.methodA在接下来fail要回滚,ServiceB.methodB也要回滚
2: PROPAGATION_SUPPORTS
如果当前在事务中,即以事务的形式运行,如果当前不再一个事务中,那么就以非事务的形式运行
3: PROPAGATION_MANDATORY
必须在一个事务中运行。也就是说,他只能被一个父事务调用。否则,他就要抛出异常
4: PROPAGATION_REQUIRES_NEW
这个就比较绕口了。 比如我们设计ServiceA.methodA的事务级别为PROPAGATION_REQUIRED,ServiceB.methodB的事务级别为PROPAGATION_REQUIRES_NEW,那么当执行到ServiceB.methodB的时候,ServiceA.methodA所在的事务就会挂起,ServiceB.methodB会起一个新的事务,等待ServiceB.methodB的事务完成以后,他才继续执行。他与PROPAGATION_REQUIRED 的事务区别在于事务的回滚程度了。因为ServiceB.methodB是新起一个事务,那么就是存在两个不同的事务。如果ServiceB.methodB已经提交,那么ServiceA.methodA失败回滚,ServiceB.methodB是不会回滚的。如果ServiceB.methodB失败回滚,如果他抛出的异常被ServiceA.methodA捕获,ServiceA.methodA事务仍然可能提交。
5: PROPAGATION_NOT_SUPPORTED
当前不支持事务。比如ServiceA.methodA的事务级别是PROPAGATION_REQUIRED ,而ServiceB.methodB的事务级别是PROPAGATION_NOT_SUPPORTED ,那么当执行到ServiceB.methodB时,ServiceA.methodA的事务挂起,而他以非事务的状态运行完,再继续ServiceA.methodA的事务。
6: PROPAGATION_NEVER
不能在事务中运行。假设ServiceA.methodA的事务级别是PROPAGATION_REQUIRED, 而ServiceB.methodB的事务级别是PROPAGATION_NEVER ,那么ServiceB.methodB就要抛出异常了。
7: PROPAGATION_NESTED
理解Nested的关键是savepoint。他与PROPAGATION_REQUIRES_NEW的区别是,PROPAGATION_REQUIRES_NEW另起一个事务,将会与他的父事务相互独立,而Nested的事务和他的父事务是相依的,他的提交是要等和他的父事务一块提交的。也就是说,如果父事务最后回滚,他也要回滚的。
二、Isolation Level(事务隔离等级):
1、Serializable:最严格的级别,事务串行执行,资源消耗最大;
2、REPEATABLE READ:保证了一个事务不会修改已经由另一个事务读取但未提交(回滚)的数据。避免了“脏读取”和“不可重复读取”的情况,但是带来了更多的性能损失。
3、READ COMMITTED:大多数主流数据库的默认事务等级,保证了一个事务不会读到另一个并行事务已修改但未提交的数据,避免了“脏读取”。该级别适用于大多数系统。
4、Read Uncommitted:保证了读取过程中不会读取到非法数据。隔离级别在于处理多事务的并发问题。
我们知道并行可以提高数据库的吞吐量和效率,但是并不是所有的并发事务都可以并发运行,这需要查看数据库教材的可串行化条件判断了。这里就不阐述。
我们首先说并发中可能发生的3中不讨人喜欢的事情
1: Dirty reads--读脏数据。也就是说,比如事务A的未提交(还依然缓存)的数据被事务B读走,如果事务A失败回滚,会导致事务B所读取的的数据是错误的。
2: non-repeatable reads--数据不可重复读。比如事务A中两处读取数据-total-的值。在第一读的时候,total是100,然后事务B就把total的数据改成 200,事务A再读一次,结果就发现,total竟然就变成200了,造成事务A数据混乱。
3: phantom reads--幻象读数据,这个和non-repeatable reads相似,也是同一个事务中多次读不一致的问题。但是non-repeatable reads的不一致是因为他所要取的数据集被改变了(比如total的数据),但是phantom reads所要读的数据的不一致却不是他所要读的数据集改变,而是他的条件数据集改变。比如Select account.id where account.name="ppgogo*",第一次读去了6个符合条件的id,第二次读取的时候,由于事务b把一个帐号的名字由"dd"改成"ppgogo1",结果取出来了7个数据。
三、readOnly
事务属性中的readOnly标志表示对应的事务应该被最优化为只读事务。
这是一个最优化提示。在一些情况下,一些事务策略能够起到显著的最优化效果,例如在使用Object/Relational映射工具(如:Hibernate或TopLink)时避免dirty checking(试图“刷新”)。
四、Timeout
在事务属性中还有定义“timeout”值的选项,指定事务超时为几秒。在JTA中,这将被简单地传递到J2EE服务器的事务协调程序,并据此得到相应的解释
- 数据库访问.zip (1.3 MB)
- 下载次数: 0
发表评论
-
领域精通涉及技术点(不分先后)
2017-12-20 19:35 640Java8 netty jvm kafaka消息队列 上传下载 ... -
计算机各种单位讲解及换算
2017-12-13 13:54 1677我还听过有UK的 一、最小单位:位(bit,缩写为b) 在原 ... -
JAVA字符串格式化-String.format()和MessageFormat的使用
2017-12-05 10:39 1503String.format()常规类型的格式化 Stri ... -
eclipse启动项目常见问题
2017-11-16 17:46 1211今儿遇到了个问题,ecli ... -
字符编码笔记:ASCII,Unicode和UTF-8
2017-10-23 16:37 476讲的太牛逼了: http://ww ... -
emoji简单讲解
2017-10-23 15:17 1001emoji处理方式大起底 http://blog.csdn.n ... -
BigDecimal讲解
2017-10-12 15:58 463BigDecimal 由任意精度的整数非标度值 和 32 位的 ... -
eclips 控制台console上不打印信息
2017-09-06 21:53 5981、进windows菜单 -> show view -& ... -
详解RequestMappingHandlerMapping和RequestMappingHandlerAdapter
2017-08-29 17:08 3030http://donald-draper.iteye.com/ ... -
用@ExceptionHandler 来进行切面异常处理
2017-08-29 11:47 2348有时候我们想处理某个类里Controller中抛出的异常怎么搞 ... -
Spring 注解@Component、@Repository、@Service、@Controller区别
2017-08-28 15:27 1043spring 2.5 中除了提供 @Com ... -
线程的一点小总结
2017-08-23 20:36 727java中main方法启动的是一个进程还是一个线程? 答:是一 ... -
线程池
2017-08-23 17:35 543诸如Web 服务器、数据库 ... -
Class源码大概讲解
2017-08-23 16:47 541http://blog.csdn.net/a327369238 ... -
Spring 事务相关
2017-08-14 12:10 494Transactionz注解的readOnly ... -
把时间当做朋友-前言
2017-08-13 20:47 429要管理的不是时间,而是自己。人们生活在同一个世界,却又各自 ... -
单例里面的方法讲解
2017-08-11 14:55 506spring里的controller是单例的。系统针对每个co ... -
eclipse拷贝出来的项目名称还是原来的
2017-07-26 16:46 1105需要修改的有如下几个地方: 1、pom.xml里面打包的名字一 ... -
自定义hibernate方言,新增自定义函数
2017-06-27 10:47 903按位与运算(&)在许多数据库中都是支持的,遗憾的是,H ... -
http请求参数:header body paramter三种参数区别、联系
2017-06-19 10:46 492512345
相关推荐
另一方面,如果项目更偏向于移动应用,那么Android Studio和Java是首选,它可以构建原生的Android应用程序。 数据交换和API交互可能涉及JSON格式,使用Jackson或Gson库来序列化和反序列化对象。对于网络请求,可能...
企业和用工单位也不再局限于对高校人才招揽和招聘更多是偏向与对于社会人才的招聘工作。社会型人才有着更多的社会经验和工作经历,而且对于新鲜的事物和技能接受程度更加强,更加符合企业和用工单位现在的发展现状和...
内容概要:本文详细介绍了基于西门子S7-200 PLC和组态王软件构建的八层电梯控制系统。首先阐述了系统的硬件配置,包括PLC的IO分配策略,如输入输出信号的具体分配及其重要性。接着深入探讨了梯形图编程逻辑,涵盖外呼信号处理、轿厢运动控制以及楼层判断等关键环节。随后讲解了组态王的画面设计,包括动画效果的实现方法,如楼层按钮绑定、轿厢移动动画和门开合效果等。最后分享了一些调试经验和注意事项,如模拟困人场景、防抖逻辑、接线艺术等。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是对PLC编程和组态软件有一定基础的人群。 使用场景及目标:适用于需要设计和实施小型电梯控制系统的工程项目。主要目标是帮助读者掌握PLC编程技巧、组态画面设计方法以及系统联调经验,从而提高项目的成功率。 其他说明:文中提供了详细的代码片段和调试技巧,有助于读者更好地理解和应用相关知识点。此外,还强调了安全性和可靠性方面的考量,如急停按钮的正确接入和硬件互锁设计等。
内容概要:本文深入探讨了无人驾驶车辆使用动力学MPC(模型预测控制)算法进行蛇形线路径跟踪的技术细节。首先介绍了蛇形线的特点及其对无人驾驶车辆带来的挑战,随后详细讲解了动力学MPC算法的基础理论,包括车辆状态表示、运动方程建模以及控制输入的选择。接着重点阐述了如何通过定义合适的目标函数并加入适当的约束条件来优化MPC算法,使其能够高效地完成蛇形线路径跟踪任务。此外,文中还讨论了一些常见的错误做法和技术改进措施,如引入航向角误差补偿项、采用松弛变量处理约束条件等。最后,作者分享了多个实用的小技巧,例如预测时域内的速度适配和平滑处理、适当降低控制频率以提高跟踪精度等。 适合人群:对无人驾驶技术和控制算法感兴趣的科研人员、工程师及高校学生。 使用场景及目标:适用于研究无人驾驶车辆路径规划与控制领域的项目开发,旨在帮助读者掌握动力学MPC算法的具体应用方法,从而更好地解决实际工程问题。 其他说明:文章不仅提供了详细的理论推导和代码实现,还结合具体案例进行了充分的实验验证,确保所提出的解决方案具有较高的可行性和可靠性。
内容概要:本文详细介绍了BYVIN(比德文)电动四轮车控制器的技术细节,涵盖了硬件设计和软件实现两大部分。硬件方面,提供了PCB文件和PDF原理图,展示了电路板布局、元件位置及电路连接关系。软件方面,代码结构清晰,模块化设计良好,包括初始化、速度数据处理、PWM配置、故障保护机制等功能模块。文中还提到了一些独特的设计细节,如PWM死区补偿、故障分级处理、卡尔曼滤波估算电池电量等。此外,代码仓库中还包括了详细的注释和调试技巧,如CAN总线实时数据传输、硬件级关断+软件状态机联动等。 适合人群:具备一定嵌入式开发基础的研发人员,尤其是对STM32F4系列单片机和电动车辆控制系统感兴趣的工程师。 使用场景及目标:适用于希望深入了解电动四轮车控制器设计原理和技术实现的研究人员和开发者。目标是掌握电动四轮车控制器的硬件设计方法和软件编程技巧,提升实际项目开发能力。 其他说明:本文不仅提供了代码和技术细节,还分享了许多实战经验和设计思路,有助于读者更好地理解和应用这些技术。
内容概要:本文详细介绍了基于S7 300 PLC和组态王的车门包边机控制系统的设计与实现。主要内容涵盖I/O分配、梯形图编程、接线图设计以及组态王的画面构建。文中通过具体的实例展示了如何利用PLC实现车门包边机的精确控制,包括启动逻辑、电机与气缸控制逻辑等。此外,还讨论了接线图中的防干扰措施、梯形图中的特殊逻辑设计以及组态王中的动态效果实现方法。最终,通过合理的硬件配置和软件编程,实现了高效、稳定且直观的车门包边机控制系统。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和组态软件使用的专业人士。 使用场景及目标:适用于汽车制造生产线中的车门包边机控制系统的开发与维护。目标是提高生产设备的自动化水平,增强系统的稳定性和可靠性,减少人工干预,提升生产效率。 其他说明:本文不仅提供了详细的理论讲解,还包括了许多实际操作中的经验和技巧,有助于读者更好地理解和应用相关技术。
基于C#实现的照片自动分拣程序+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 简单易用的照片自动分类工具,它能够自动读取照片的拍摄日期信息,并按照年月结构将照片整理到对应的文件夹中,帮助用户轻松管理大量照片文件。 主要功能 自动分类:根据照片的拍摄时间,自动将照片分类到对应的年月文件夹中 多格式支持:支持 JPG、JPEG、PNG、GIF 等常见图片格式 智能处理: 自动读取照片 EXIF 信息获取拍摄日期 当无法读取 EXIF 信息时,自动使用文件创建时间 智能处理文件重名冲突 高效处理: 采用并行处理技术,提高大量照片的处理速度 优化文件读取和移动操作,减少系统资源占用 自动调整并行任务数量,平衡系统负载
KUKA机器人相关文档
Tripple Farm:Match 3 Combination Game Complete Project 合成小镇三消Unity合成消除游戏项目游戏插件模版C# 支持Unity2020.3.4或更高 您知道像三合镇这样的著名益智游戏,并且您想制作一个自己的游戏。就是这样。这个包正好适合您。 这是一个完整的项目,您可以在零分钟内将其上传到 appstore 或 googleplay 商店。 基本规则: 3个或以上相同的道具可以匹配升级为新的道具。动物如果被困住,也可以合并。 羽毛: -移动(android/ios)就绪。 - 包含所有源代码。 -超过 12 座建筑/军团需要升级。 -三种特殊物品可以提供帮助。 - 三个不同的主题(场景和动物) -unity iap 支持 -Unity UI -广告位已准备好 -包含详细文档
内容概要:本文详细介绍了基于下垂控制的三相逆变器电压电流双闭环控制的仿真方法及其在MATLAB/Simulink和PLECS中的具体实现。首先解释了下垂控制的基本原理,即有功调频和无功调压,并给出了相应的数学表达式。随后讨论了电压环和电流环的设计与参数整定,强调了两者带宽的差异以及PI控制器的参数选择。文中还提到了一些常见的调试技巧,如锁相环的响应速度、LC滤波器的谐振点处理、死区时间设置等。此外,作者分享了一些实用的经验,如避免过度滤波、合理设置采样周期和下垂系数等。最后,通过突加负载测试展示了系统的动态响应性能。 适合人群:从事电力电子、微电网研究的技术人员,尤其是有一定MATLAB/Simulink和PLECS使用经验的研发人员。 使用场景及目标:适用于希望深入了解三相逆变器下垂控制机制的研究人员和技术人员,旨在帮助他们掌握电压电流双闭环控制的具体实现方法,提高仿真的准确性和效率。 其他说明:本文不仅提供了详细的理论讲解,还结合了大量的实战经验和调试技巧,有助于读者更好地理解和应用相关技术。
内容概要:本文详细记录了作者对EP100伺服驱动器进行的一系列优化和改进。主要内容包括:修复原厂代码中的多个致命Bug,如定时器配置冲突、PWM信号不触发、电流采样误差等问题;优化电机启动、增量编码器找零、串口通信、相序反转等功能;并对硬件进行了改进,如调整MOS管布局、优化滤波电容位置等。通过这些改动,显著提高了系统的稳定性、精度和可靠性。 适合人群:具有一定嵌入式系统开发经验的工程师,尤其是熟悉STM32单片机和伺服控制系统的技术人员。 使用场景及目标:适用于需要对现有伺服驱动器进行性能优化和技术改造的项目。主要目标是提高系统的稳定性和精度,解决原厂代码中存在的各种问题,确保伺服驱动器能够在高负载条件下正常工作。 其他说明:文中提供了详细的代码片段和硬件改进措施,帮助读者更好地理解和应用相关技术。同时,作者分享了许多实际操作中的经验和技巧,对于从事类似项目的工程师具有很高的参考价值。
内容概要:本文详细介绍了光储直流微电网中利用Simulink进行仿真建模的方法,重点探讨了光伏系统的最大功率点跟踪(MPPT)控制以及蓄电池和超级电容的功率分配策略。文中提供了具体的MATLAB代码实现,包括MPPT控制算法和低通滤波器(LPF)用于功率分配的具体参数设置。此外,还讨论了仿真过程中遇到的问题及解决方案,如避免系统震荡、优化直流母线电压控制等。 适合人群:从事电力电子、新能源发电、微电网研究的技术人员和研究人员,尤其适用于有一定Simulink使用经验和MATLAB编程基础的人群。 使用场景及目标:①理解和掌握光储直流微电网的工作原理;②学习如何使用Simulink搭建完整的光储并网系统仿真模型;③优化MPPT控制算法和功率分配策略,提高系统的稳定性和效率。 其他说明:文章强调了参数整定的重要性,并分享了许多实用的经验和技术细节,对于希望深入研究光储直流微电网仿真的读者非常有价值。
stm32 PWM学习专题附代码
2898702486frft2d.m
包括:源程序工程文件、Proteus仿真工程文件、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、采用汇编语言编程; 3、采用8个DS18B20传感器检测8路温度; 4、采用数码管循环显示通道号及温度值; 5、采用74HC595驱动显示;
内容概要:本文详细介绍了如何使用MATLAB GUI构建一个功能丰富的图像处理工具箱。该工具箱涵盖了图像的基本操作如灰度化、边缘检测、直方图均衡化等功能,并提供了实时对比和多种算法选择。文中不仅展示了具体的代码实现,还深入探讨了每种算法背后的原理和技术细节。例如,灰度化采用NTSC标准权重进行RGB到灰度的转换,边缘检测使用Sobel和Canny算子,直方图均衡化则强调了在HSV空间处理V通道的重要性。此外,作者分享了许多实践经验,包括性能优化技巧、异常处理以及不同算法在特定场景下的表现。 适合人群:具有一定MATLAB基础的开发者、图像处理领域的研究人员及爱好者。 使用场景及目标:① 学习MATLAB GUI编程及其在图像处理中的应用;② 掌握常见的图像处理算法及其优化方法;③ 构建自己的图像处理工具箱,用于科研或工程项目。 其他说明:文章配有详细的代码示例和理论解释,有助于读者更好地理解和掌握相关知识点。同时,文中提到的一些优化技巧和注意事项对于提高程序性能和稳定性非常有用。
内容概要:本文详细介绍了如何使用Simulink搭建BLDC无刷直流电机的转速电流双闭环控制系统。首先,文章解释了电流环和转速环的设计要点,包括PI控制器参数的选择、电流采样的频率设置以及PWM生成模块的配置。接着,作者分享了一些实用的仿真技巧,如使用简化版卡尔曼滤波代替传统测速发电机、加入PWM载波频率的随机抖动以减少谐振噪声、以及针对常见错误的解决方案。此外,文中还提供了具体的MATLAB代码片段,帮助读者更好地理解和实现各个模块的功能。最后,文章强调了仿真过程中需要注意的关键点,如参数整定、故障注入模块的应用和仿真加速方法。 适合人群:从事电机控制研究的技术人员、电气工程专业的学生以及对BLDC电机仿真感兴趣的工程师。 使用场景及目标:适用于需要进行BLDC电机控制算法开发和测试的研究项目,旨在提高仿真效率并确保最终控制效果的稳定性。通过学习本文,读者能够掌握双闭环控制系统的搭建方法及其优化技巧。 其他说明:文中提供的代码和技巧均经过实际验证,具有较高的实用性。建议读者在实践中结合自身需求进行适当调整。
内容概要:本文详细介绍了微电网并离网下垂控制Simulink模型的设计与实现,特别针对MATLAB 2018版本。模型涵盖分布式电源、负荷、储能装置及控制模块,通过下垂控制实现微电网在并网和离网模式间的平稳切换与稳定运行。文中提供了详细的代码示例,解释了下垂控制的关键参数设定及其对系统稳定性的影响。此外,还讨论了并离网切换逻辑、锁相环设计、滤波器参数选择等问题,并给出了仿真技巧和性能评估方法。 适合人群:从事电力系统研究、微电网控制技术研发的专业人士和技术爱好者。 使用场景及目标:①研究微电网并离网控制策略;②验证下垂控制算法的有效性;③优化微电网系统的动态响应和稳定性;④测试不同工况下的系统性能。 其他说明:该模型在MATLAB 2018中表现出色,能够作为可靠的研究工具,帮助研究人员深入了解并离网下垂控制的原理与应用。
内容概要:本文详细介绍了FPGA处理周期信号的两种主要方法:状态机和计数器。首先,通过对两个具体版本的Verilog代码进行解析,展示了不同的处理逻辑和技术细节。版本一采用简单的移位操作,适用于信号放大的场景;版本二引入计数器,能够实现周期信号的累加,适用于统计数据的应用。接着,文章深入探讨了状态机和计数器两种实现方式的特点与优劣。状态机版本虽然调试友好,但在高频信号处理时可能存在时序问题;计数器版本资源占用少,适合高频或占空比不固定的场景。此外,还提供了具体的性能实测对比,如资源占用、最大频率和抗干扰能力等方面的数据。最后,给出了实际项目的选型建议,强调了根据具体需求选择合适的实现方案的重要性。 适合人群:具有一定FPGA开发经验的研发人员,尤其是从事数字电路设计、嵌入式系统开发的技术人员。 使用场景及目标:①帮助开发者理解FPGA处理周期信号的基本原理;②提供两种常见实现方案的具体代码示例及解析;③指导开发者根据实际项目需求选择最合适的实现方式。 其他说明:文中不仅提供了理论分析,还结合了实际案例,分享了作者在调试过程中遇到的问题及解决方案,有助于读者更好地理解和应用相关技术。