`

hbase scan filter以及hbase逻辑存储图和hbase打印数据效果

 
阅读更多

 

 

0.0  看hbase shell命令行下结果:

 

ROW                   COLUMN+CELL
 1                    column=base:age, timestamp=1456557395891, value=31
 1                    column=base:name, timestamp=1456557377874, value=zm
 2                    column=base:age, timestamp=1456554268023, value=1
 2                    column=base:name, timestamp=1456554268023, value=baobao
 3                    column=base:age, timestamp=1456398168279, value=1
 3                    column=base:name, timestamp=1456542759628, value=houhou
3 row(s) in 0.5190 seconds

 

 

 上述数据 hbase逻辑存储结构为:

 



 

 

如果 通过 scan循环上述表的话,那么真实中会有6行数据,并会循环六次。

 

0 前言:

 

hbase为筛选数据提供了一组过滤器,这样可以在hbase的多个维度(行,列,数据版本)上进行数据筛选,

通常使用 行健 ,  值来筛选数据的应用场景较多。

 

 

 

1 rowfilter:   筛选出行健匹配到的所有行

 

Filter rf = new RowFilter(CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("row1"))); // OK 筛选出匹配的所有的行 

 

针对0.0的数据,下列代码和展示结果:

	try {
			HBaseAdmin hBaseAdmin = new HBaseAdmin(conf);
			HTable htable = new HTable(conf, "stu");
			Scan scan = new Scan();
			// RowFilter是根据rowkey来过滤,下面是来过滤 rowkey只是非零的正整数的
			Filter filter = new RowFilter(CompareOp.EQUAL, new RegexStringComparator("^\\+?[1-9][0-9]*$")); 
			scan.setFilter(filter); // 增加过滤器
			ResultScanner resultScanner = htable.getScanner(scan);
			for(Result result : resultScanner){ //result: HBase cell defined by the row, family, qualifier, timestamp, and value
				/*String rowKey = new String(result.getRow());
				System.out.println(rowKey);*/
				if(result.raw().length==0){
					System.out.println("使用正则过滤stu 表数据为空");
				}else{ //在hbase中为6行,最后结果会循环着6行然后将这6行每一列打印出来
					for(KeyValue kv : result.raw()){ // 得到组成result的各个单元cell, 这些cell是由row, family, qualifier,value等组成
						System.out.println(Bytes.toString(kv.getRow()));
						System.out.println(Bytes.toString(kv.getFamily()));
						System.out.println(Bytes.toString(kv.getQualifier()));
						System.out.println(Bytes.toString(kv.getValue()));
					}
				}
			}
		} catch (Exception e) {
			e.printStackTrace();
		}

 

 

 

 PrefixFilter:筛选出具有特定前缀的行键的数据。这个过滤器所实现的功能其实也可以由RowFilter结合RegexComparator来实现,不过这里提供了一种简便的使用方法,以下过滤器就是筛选出行键以row为前缀的所有的行:

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. Filter pf = new PrefixFilter(Bytes.toBytes("row")); // OK  筛选匹配行键的前缀成功的行  
 
 KeyOnlyFilter:这个过滤器唯一的功能就是只返回每行的行键,值全部为空,这对于只关注于行键的应用场景来说非常合适,这样忽略掉其值就可以减少传递到客户端的数据量,能起到一定的优化作用:

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. Filter kof = new KeyOnlyFilter(); // OK 返回所有的行,但值全是空  
 
4 RandomRowFilter:从名字上就可以看出其大概的用法,本过滤器的作用就是按照一定的几率(<=0会过滤掉所有的行,>=1会包含所有的行)来返回随机的结果集,对于同样的数据集,多次使用同一个RandomRowFilter会返回不通的结果集,对于需要随机抽取一部分数据的应用场景,可以使用此过滤器:

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. Filter rrf = new RandomRowFilter((float0.8); // OK 随机选出一部分的行  
 
5 5. InclusiveStopFilter:扫描的时候,我们可以设置一个开始行键和一个终止行键,默认情况下,这个行键的返回是前闭后开区间,即包含起始行,单不包含中指行,如果我们想要同时包含起始行和终止行,那么我们可以使用此过滤器:

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. Filter isf = new InclusiveStopFilter(Bytes.toBytes("row1")); // OK 包含了扫描的上限在结果之内  

6. FirstKeyOnlyFilter:如果你只想返回的结果集中只包含第一列的数据,那么这个过滤器能够满足你的要求。它在找到每行的第一列之后会停止扫描,从而使扫描的性能也得到了一定的提升:

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. Filter fkof = new FirstKeyOnlyFilter(); // OK 筛选出第一个每个第一个单元格  

7. ColumnPrefixFilter:顾名思义,它是按照列名的前缀来筛选单元格的,如果我们想要对返回的列的前缀加以限制的话,可以使用这个过滤器:

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. Filter cpf = new ColumnPrefixFilter(Bytes.toBytes("qual1")); // OK 筛选出前缀匹配的列  

8. ValueFilter:按照具体的值来筛选单元格的过滤器,这会把一行中值不能满足的单元格过滤掉,如下面的构造器,对于每一行的一个列,如果其对应的值不包含ROW2_QUAL1,那么这个列就不会返回给客户端:

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. Filter vf = new ValueFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator("ROW2_QUAL1")); // OK 筛选某个(值的条件满足的)特定的单元格  

9. ColumnCountGetFilter:这个过滤器来返回每行最多返回多少列,并在遇到一行的列数超过我们所设置的限制值的时候,结束扫描操作:

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. Filter ccf = new ColumnCountGetFilter(2); // OK 如果突然发现一行中的列数超过设定的最大值时,整个扫描操作会停止  

10. SingleColumnValueFilter:用一列的值决定这一行的数据是否被过滤。在它的具体对象上,可以调用setFilterIfMissing(true)或者setFilterIfMissing(false),默认的值是false,其作用是,对于咱们要使用作为条件的列,如果这一列本身就不存在,那么如果为true,这样的行将会被过滤掉,如果为false,这样的行会包含在结果集中。

 

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. SingleColumnValueFilter scvf = new SingleColumnValueFilter(  
  2.         Bytes.toBytes("colfam1"),   
  3.         Bytes.toBytes("qual2"),   
  4.         CompareFilter.CompareOp.NOT_EQUAL,   
  5.         new SubstringComparator("BOGUS"));  
  6. scvf.setFilterIfMissing(false);  
  7. scvf.setLatestVersionOnly(true); // OK  

11. SingleColumnValueExcludeFilter:这个与10种的过滤器唯一的区别就是,作为筛选条件的列的不会包含在返回的结果中。

 

12. SkipFilter:这是一种附加过滤器,其与ValueFilter结合使用,如果发现一行中的某一列不符合条件,那么整行就会被过滤掉:

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. Filter skf = new SkipFilter(vf); // OK 发现某一行中的一列需要过滤时,整个行就会被过滤掉  

13. WhileMatchFilter:这个过滤器的应用场景也很简单,如果你想要在遇到某种条件数据之前的数据时,就可以使用这个过滤器;当遇到不符合设定条件的数据的时候,整个扫描也就结束了:

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. Filter wmf = new WhileMatchFilter(rf); // OK 类似于Python itertools中的takewhile  

14. FilterList:用于综合使用多个过滤器。其有两种关系:FilterList.Operator.MUST_PASS_ONE和FilterList.Operator.MUST_PASS_ALL,默认的是FilterList.Operator.MUST_PASS_ALL,顾名思义,它们分别是AND和OR的关系,并且FilterList可以嵌套使用FilterList,使我们能够表达更多的需求:

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. List<Filter> filters = new ArrayList<Filter>();  
  2. filters.add(rf);  
  3. filters.add(vf);  
  4. FilterList fl = new FilterList(FilterList.Operator.MUST_PASS_ALL, filters); // OK 综合使用多个过滤器, AND 和 OR 两种关系  
 

以下代码是数据写入代码:

 
 

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. package com.reyun.hbase;  
  2.   
  3. import java.io.IOException;  
  4. import org.apache.hadoop.conf.Configuration;  
  5. import org.apache.hadoop.hbase.HBaseConfiguration;  
  6. import org.apache.hadoop.hbase.client.HTable;  
  7. import org.apache.hadoop.hbase.client.Put;  
  8. import org.apache.hadoop.hbase.util.Bytes;  
  9.   
  10. public class HBaseDataFeeding {  
  11.     private final static byte[] ROW1 = Bytes.toBytes("row1");  
  12.     private final static byte[] ROW2 = Bytes.toBytes("row2");  
  13.     private final static byte[] COLFAM1 = Bytes.toBytes("colfam1");  
  14.     private final static byte[] COLFAM2 = Bytes.toBytes("colfam2");  
  15.     private final static byte[] QUAL1 = Bytes.toBytes("qual1");  
  16.     private final static byte[] QUAL2 = Bytes.toBytes("qual2");  
  17.       
  18.       
  19.     public static void main(String[] args) throws IOException {  
  20.         Configuration conf = HBaseConfiguration.create();  
  21.         HTable table = new HTable(conf, "testtable");  
  22.         table.setAutoFlushTo(false);  
  23.         Put put_row1 = new Put(ROW1);  
  24.         put_row1.add(COLFAM1, QUAL1, Bytes.toBytes("ROW1_QUAL1_VAL"));  
  25.         put_row1.add(COLFAM1, QUAL2, Bytes.toBytes("ROW1_QUAL2_VAL"));  
  26.           
  27.         Put put_row2 = new Put(ROW2);  
  28.         put_row2.add(COLFAM1, QUAL1, Bytes.toBytes("ROW2_QUAL1_VAL"));  
  29.         put_row2.add(COLFAM1, QUAL2, Bytes.toBytes("ROW2_QUAL2_VAL"));  
  30.           
  31.         try{  
  32.             table.put(put_row1);  
  33.             table.put(put_row2);  
  34.         }finally{  
  35.             table.close();  
  36.         }  
  37.     }  
  38.   
  39. }  

以下是过滤器测试代码,可以通过修改代码,更换过滤器来看到具体的效果:

 

 

[java] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. package com.reyun.hbase;  
  2.   
  3. import java.io.IOException;  
  4. import java.util.ArrayList;  
  5. import java.util.List;  
  6.   
  7. import org.apache.hadoop.conf.Configuration;  
  8. import org.apache.hadoop.hbase.Cell;  
  9. import org.apache.hadoop.hbase.CellUtil;  
  10. import org.apache.hadoop.hbase.HBaseConfiguration;  
  11. import org.apache.hadoop.hbase.client.HTable;  
  12. import org.apache.hadoop.hbase.client.Result;  
  13. import org.apache.hadoop.hbase.client.ResultScanner;  
  14. import org.apache.hadoop.hbase.client.Scan;  
  15. import org.apache.hadoop.hbase.filter.BinaryComparator;  
  16. import org.apache.hadoop.hbase.filter.ColumnCountGetFilter;  
  17. import org.apache.hadoop.hbase.filter.ColumnPrefixFilter;  
  18. import org.apache.hadoop.hbase.filter.CompareFilter;  
  19. import org.apache.hadoop.hbase.filter.Filter;  
  20. import org.apache.hadoop.hbase.filter.FilterList;  
  21. import org.apache.hadoop.hbase.filter.FirstKeyOnlyFilter;  
  22. import org.apache.hadoop.hbase.filter.InclusiveStopFilter;  
  23. import org.apache.hadoop.hbase.filter.KeyOnlyFilter;  
  24. import org.apache.hadoop.hbase.filter.PageFilter;  
  25. import org.apache.hadoop.hbase.filter.PrefixFilter;  
  26. import org.apache.hadoop.hbase.filter.RandomRowFilter;  
  27. import org.apache.hadoop.hbase.filter.RowFilter;  
  28. import org.apache.hadoop.hbase.filter.SkipFilter;  
  29. import org.apache.hadoop.hbase.filter.ValueFilter;  
  30. import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;  
  31. import org.apache.hadoop.hbase.filter.SubstringComparator;  
  32. import org.apache.hadoop.hbase.filter.WhileMatchFilter;  
  33. import org.apache.hadoop.hbase.util.Bytes;  
  34.   
  35. public class HBaseScannerTest {  
  36.   
  37.     public static void main(String[] args) throws IOException, IllegalAccessException {  
  38.         Configuration conf = HBaseConfiguration.create();  
  39.         HTable table = new HTable(conf, "testtable");  
  40.         table.setAutoFlushTo(false);  
  41.           
  42.         Scan scan1 = new Scan();  
  43.         SingleColumnValueFilter scvf = new SingleColumnValueFilter(  
  44.                 Bytes.toBytes("colfam1"),   
  45.                 Bytes.toBytes("qual2"),   
  46.                 CompareFilter.CompareOp.NOT_EQUAL,   
  47.                 new SubstringComparator("BOGUS"));  
  48.         scvf.setFilterIfMissing(false);  
  49.         scvf.setLatestVersionOnly(true); // OK  
  50.         Filter ccf = new ColumnCountGetFilter(2); // OK 如果突然发现一行中的列数超过设定的最大值时,整个扫描操作会停止  
  51.         Filter vf = new ValueFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator("ROW2_QUAL1")); // OK 筛选某个(值的条件满足的)特定的单元格  
  52.         Filter cpf = new ColumnPrefixFilter(Bytes.toBytes("qual2")); // OK 筛选出前缀匹配的列  
  53.         Filter fkof = new FirstKeyOnlyFilter(); // OK 筛选出第一个每个第一个单元格  
  54.         Filter isf = new InclusiveStopFilter(Bytes.toBytes("row1")); // OK 包含了扫描的上限在结果之内  
  55.         Filter rrf = new RandomRowFilter((float0.8); // OK 随机选出一部分的行  
  56.         Filter kof = new KeyOnlyFilter(); // OK 返回所有的行,但值全是空  
  57.         Filter pf = new PrefixFilter(Bytes.toBytes("row")); // OK  筛选匹配行键的前缀成功的行  
  58.         Filter rf = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryComparator(Bytes.toBytes("row1"))); // OK 筛选出匹配的所有的行  
  59.         Filter wmf = new WhileMatchFilter(rf); // OK 类似于Python itertools中的takewhile  
  60.         Filter skf = new SkipFilter(vf); // OK 发现某一行中的一列需要过滤时,整个行就会被过滤掉  
  61.           
  62.         List<Filter> filters = new ArrayList<Filter>();  
  63.         filters.add(rf);  
  64.         filters.add(vf);  
  65.         FilterList fl = new FilterList(FilterList.Operator.MUST_PASS_ALL, filters); // OK 综合使用多个过滤器, AND 和 OR 两种关系  
  66.           
  67.         scan1.  
  68.         setStartRow(Bytes.toBytes("row1")).  
  69.         setStopRow(Bytes.toBytes("row3")).  
  70.         setFilter(scvf);   
  71.         ResultScanner scanner1 = table.getScanner(scan1);  
  72.           
  73.         for(Result res : scanner1){  
  74.             for(Cell cell : res.rawCells()){  
  75.                 System.out.println("KV: " + cell + ", Value: " + Bytes.toString(CellUtil.cloneValue(cell)));  
  76.             }  
  77.             System.out.println("------------------------------------------------------------");  
  78.         }  
  79.           
  80.         scanner1.close();  
  81.         table.close();  
  82.     }  
  83.    
  84. }  
 
 

 

  • 大小: 1.3 KB
分享到:
评论

相关推荐

    HBase基本操作.pdf

    HBase是一种开源的非关系型分布式...需要注意的是,实验手册中提供的命令格式和使用说明是非常基础的入门指引,对于深入应用HBase来说,掌握高级的Filter使用、时间戳和版本控制、以及数据批量导入方法将更为关键。

    Java操作Hbase进行建表、删表以及对数据进行增删改查

    Hbase 提供了高性能、可扩展性和高可用性的数据存储解决方案。 二、Java 操作 Hbase ### 1. 搭建环境 要使用 Java 操作 Hbase,首先需要搭建环境。新建一个 Java 项目,然后添加相关的 jar 包,包括 hadoop-core-...

    Hbase实验报告.pdf

    实验旨在让参与者熟练掌握HBase的Shell操作,包括创建表、输入数据以及进行特定查询。以下是详细步骤及知识点解析: ### 1. HBase Shell基础 HBase Shell是HBase提供的命令行界面,用户可以通过它来与HBase集群...

    HBase数据读取流程解析-3——scan查询.pdf

    在HBase中,数据读取流程相对复杂,尤其是Scan查询,这是由于其独特的数据存储和更新机制。本文将深入探讨HBase的Scan查询流程。 HBase的存储引擎基于LSM-Like树,这使得一次范围查询可能涉及到多个Region(分片)...

    hbase-2.4.17-bin 安装包

    HBase是Apache Hadoop生态系统中的一个分布式、版本化、列族式存储系统,设计用于处理大规模数据集。这个“hbase-2.4.17-bin”安装包提供了HBase的最新稳定版本2.4.17,适用于大数据处理和分析场景。下面将详细介绍...

    java-hbase开发包

    5. **过滤器和比较器**:通过使用`Filter`接口,开发者可以实现复杂的数据筛选逻辑,如基于特定条件的查询。同时,`Comparator`接口允许自定义列值的比较规则。 6. **安全性与权限**:Java-HBase开发包也支持HBase...

    HBase:权威指南(中文版)

    HBase支持多种查询方式,如Get、Scan和Filter,这些工具可以帮助开发者实现复杂的数据检索逻辑。同时,理解如何根据业务需求调整HBase配置,以及如何处理数据热点问题,是提高系统性能的关键。 总之,《HBase:权威...

    hbase 学习 hbase原理 hbase资料

    这意味着HBase的数据是跨多台服务器分布式存储的,提供了高可用性和容错性。HBase的数据模型基于BigTable的设计,以行和列来进行数据组织,每个表被分为多个行,行由行键(Row Key)标识,而每一行又包含多个列族...

    HBase使用的jar包

    在分布式大数据处理领域,HBase是一个非常重要的列式存储数据库,尤其在处理海量实时数据时表现出色。HBase是构建在Hadoop文件系统(HDFS)之上的,它提供了高度可扩展性和高并发读写能力。为了在Hadoop项目中使用...

    hbase java api 访问 查询、分页

    在实际应用中,可能会涉及到更复杂的查询场景,如使用Filter进行数据筛选,或者利用HBase的Region Split特性优化存储和查询性能。对于过滤器,可以创建各种类型的Filter对象,如`PrefixFilter`、`RowFilter`等,并将...

    HBase权威指南中文版

    可以利用布隆过滤器(Bloom Filter)减少无效的磁盘I/O,以及Scan操作来批量获取数据。 7. **HBase与Hadoop集成**:HBase构建在Hadoop的HDFS之上,利用HDFS的分布式存储特性。MapReduce可以用于对HBase进行批量操作...

    hbase shell常用命令汇总

    - **功能**: 显示HBase集群的状态信息,包括活动Master节点以及RegionServer的状态。 - **示例**: ```shell hbase(main):002:0&gt; status { "cluster" : "test-cluster", "timestamp" : 1649309921757, "master" ...

    HBase性能优化方法总结

    在大数据处理领域,HBase作为一个分布式列式存储系统,因其高效的数据存储和查询能力而备受青睐。然而,随着数据量的增长,如何进行有效的性能优化变得至关重要。本文将深入探讨HBase性能优化的各种策略,旨在帮助你...

    hbase的shell操作

    根据提供的文件信息,本文将详细介绍HBase的Shell操作及其应用场景,包括如何创建表、插入数据、查询数据等关键操作。 ### HBase Shell简介 HBase Shell是HBase提供的一种交互式命令行工具,用于执行HBase操作。它...

    hbase学习笔记

    HBase的设计目标是为了处理大规模的数据存储和快速随机访问。 1. **HBase表结构**: HBase的表由行(Row)和列(Column)组成,但不同于传统的关系型数据库,列在HBase中被组织成列族(Column Family)。例如,一...

    Hbase Java API

    HBase 的 Java API 提供了多种方法来操作数据,如 put、get、scan 和 delete。put 方法用于插入数据,get 方法用于获取数据,scan 方法用于扫描数据,delete 方法用于删除数据。HBase 的 Java API 还提供了多种工具...

    hbase 分页功能

    在大数据存储领域,HBase作为一个分布式列式数据库,经常用于处理海量数据的快速查询。由于数据量巨大,分页查询成为必不可少的功能,以避免一次性加载过多数据导致性能问题。本篇将详细介绍HBase如何利用PageFilter...

    java操作Hbase之比较过滤器RowFilter的使用源码

    在Java中操作HBase,过滤数据是至关重要的任务,特别是在处理大数据时,高效地筛选出所需信息能够极大地提升性能。本文将深入探讨HBase的比较过滤器RowFilter的使用源码,帮助你理解如何在实际项目中应用这一关键...

    HBase轻量级中间件simplehbase.zip

     数据类型映射:java类型和hbase的bytes之间的数据转换。  简单操作封装:封装了hbase的put,get,scan等操作为简单的java操作方式。  hbase query封装:封装了hbase的filter,可以使用sql-like的方式操作hbase。...

Global site tag (gtag.js) - Google Analytics