原文:http://blog.csdn.net/lskyne/article/details/37564449
问题导读:
1.Flume的存在些什么问题?
2.基于开源的Flume美团增加了哪些功能?
3.Flume系统如何调优?
在《基于Flume的美团日志收集系统(一)架构和设计》中,我们详述了基于Flume的美团日志收集系统的架构设计,以及为什么做这样的设计。在本节中,我们将会讲述在实际部署和使用过程中遇到的问题,对Flume的功能改进和对系统做的优化。
1 Flume的问题总结
在Flume的使用过程中,遇到的主要问题如下:
a. Channel“水土不服”:使用固定大小的MemoryChannel在日志高峰时常报队列大小不够的异常;使用FileChannel又导致IO繁忙的问题;
b. HdfsSink的性能问题:使用HdfsSink向Hdfs写日志,在高峰时间速度较慢;
c. 系统的管理问题:配置升级,模块重启等;
2 Flume的功能改进和优化点
从上面的问题中可以看到,有一些需求是原生Flume无法满足的,因此,基于开源的Flume我们增加了许多功能,修改了一些Bug,并且进行一些调优。下面将对一些主要的方面做一些说明。
2.1 增加Zabbix monitor服务
一方面,Flume本身提供了http, ganglia的监控服务,而我们目前主要使用zabbix做监控。因此,我们为Flume添加了zabbix监控模块,和sa的监控服务无缝融合。
另一方面,净化Flume的metrics。只将我们需要的metrics发送给zabbix,避免 zabbix server造成压力。目前我们最为关心的是Flume能否及时把应用端发送过来的日志写到Hdfs上, 对应关注的metrics为:
Source : 接收的event数和处理的event数
Channel : Channel中拥堵的event数
Sink : 已经处理的event数
2.2 为HdfsSink增加自动创建index功能
首先,我们的HdfsSink写到hadoop的文件采用lzo压缩存储。 HdfsSink可以读取hadoop配置文件中提供的编码类列表,然后通过配置的方式获取使用何种压缩编码,我们目前使用lzo压缩数据。采用lzo压缩而非bz2压缩,是基于以下测试数据:
event大小(Byte) sink.batch-size hdfs.batchSize 压缩格式 总数据大小(G) 耗时(s) 平均events/s 压缩后大小(G)
544 300 10000 bz2 9.1 2448 6833 1.36 |
544 300 10000 lzo 9.1 612 27333 3.49 |
其次,我们的HdfsSink增加了创建lzo文件后自动创建index功能。Hadoop提供了对lzo创建索引,使得压缩文件是可切分的,这样Hadoop Job可以并行处理数据文件。HdfsSink本身lzo压缩,但写完lzo文件并不会建索引,我们在close文件之后添加了建索引功能。
/**
* Rename bucketPath file from .tmp to permanent location.
*/
private void renameBucket() throws IOException, InterruptedException {
if(bucketPath.equals(targetPath)) {
return;
}
final Path srcPath = new Path(bucketPath);
final Path dstPath = new Path(targetPath);
callWithTimeout(new CallRunner<Object>() {
@Override
public Object call() throws Exception {
if(fileSystem.exists(srcPath)) { // could block
LOG.info("Renaming " + srcPath + " to " + dstPath);
fileSystem.rename(srcPath, dstPath); // could block
//index the dstPath lzo file
if (codeC != null && ".lzo".equals(codeC.getDefaultExtension()) ) {
LzoIndexer lzoIndexer = new LzoIndexer(new Configuration());
lzoIndexer.index(dstPath);
}
}
return null;
}
});
}
2.3 增加HdfsSink的开关
我们在HdfsSink和DualChannel中增加开关,当开关打开的情况下,HdfsSink不再往Hdfs上写数据,并且数据只写向DualChannel中的FileChannel。以此策略来防止Hdfs的正常停机维护。
2.4 增加DualChannel
Flume本身提供了MemoryChannel和FileChannel。MemoryChannel处理速度快,但缓存大小有限,且没有持久化;FileChannel则刚好相反。我们希望利用两者的优势,在Sink处理速度够快,Channel没有缓存过多日志的时候,就使用MemoryChannel,当Sink处理速度跟不上,又需要Channel能够缓存下应用端发送过来的日志时,就使用FileChannel,由此我们开发了DualChannel,能够智能的在两个Channel之间切换。
其具体的逻辑如下:
/***
* putToMemChannel indicate put event to memChannel or fileChannel
* takeFromMemChannel indicate take event from memChannel or fileChannel
* */
private AtomicBoolean putToMemChannel = new AtomicBoolean(true);
private AtomicBoolean takeFromMemChannel = new AtomicBoolean(true);
void doPut(Event event) {
if (switchon && putToMemChannel.get()) {
//往memChannel中写数据
memTransaction.put(event);
if ( memChannel.isFull() || fileChannel.getQueueSize() > 100) {
putToMemChannel.set(false);
}
} else {
//往fileChannel中写数据
fileTransaction.put(event);
}
}
Event doTake() {
Event event = null;
if ( takeFromMemChannel.get() ) {
//从memChannel中取数据
event = memTransaction.take();
if (event == null) {
takeFromMemChannel.set(false);
}
} else {
//从fileChannel中取数据
event = fileTransaction.take();
if (event == null) {
takeFromMemChannel.set(true);
putToMemChannel.set(true);
}
}
return event;
}
2.5 增加NullChannel
Flume提供了NullSink,可以把不需要的日志通过NullSink直接丢弃,不进行存储。然而,Source需要先将events存放到Channel中,NullSink再将events取出扔掉。为了提升性能,我们把这一步移到了Channel里面做,所以开发了NullChannel。
2.6 增加KafkaSink
为支持向Storm提供实时数据流,我们增加了KafkaSink用来向Kafka写实时数据流。其基本的逻辑如下:
public class KafkaSink extends AbstractSink implements Configurable {
private String zkConnect;
private Integer zkTimeout;
private Integer batchSize;
private Integer queueSize;
private String serializerClass;
private String producerType;
private String topicPrefix;
private Producer<String, String> producer;
public void configure(Context context) {
//读取配置,并检查配置
}
@Override
public synchronized void start() {
//初始化producer
}
@Override
public synchronized void stop() {
//关闭producer
}
@Override
public Status process() throws EventDeliveryException {
Status status = Status.READY;
Channel channel = getChannel();
Transaction tx = channel.getTransaction();
try {
tx.begin();
//将日志按category分队列存放
Map<String, List<String>> topic2EventList = new HashMap<String, List<String>>();
//从channel中取batchSize大小的日志,从header中获取category,生成topic,并存放于上述的Map中;
//将Map中的数据通过producer发送给kafka
tx.commit();
} catch (Exception e) {
tx.rollback();
throw new EventDeliveryException(e);
} finally {
tx.close();
}
return status;
}
}
2.7 修复和scribe的兼容问题
Scribed在通过ScribeSource发送数据包给Flume时,大于4096字节的包,会先发送一个Dummy包检查服务器的反应,而Flume的ScribeSource对于logentry.size()=0的包返回TRY_LATER,此时Scribed就认为出错,断开连接。这样循环反复尝试,无法真正发送数据。现在在ScribeSource的Thrift接口中,对size为0的情况返回OK,保证后续正常发送数据。
3. Flume系统调优经验总结3.1 基础参数调优经验
HdfsSink中默认的serializer会每写一行在行尾添加一个换行符,我们日志本身带有换行符,这样会导致每条日志后面多一个空行,修改配置不要自动添加换行符;
lc.sinks.sink_hdfs.serializer.appendNewline = false
调大MemoryChannel的capacity,尽量利用MemoryChannel快速的处理能力;
调大HdfsSink的batchSize,增加吞吐量,减少hdfs的flush次数;
适当调大HdfsSink的callTimeout,避免不必要的超时错误;
3.2 HdfsSink获取Filename的优化
HdfsSink的path参数指明了日志被写到Hdfs的位置,该参数中可以引用格式化的参数,将日志写到一个动态的目录中。这方便了日志的管理。例如我们可以将日志写到category分类的目录,并且按天和按小时存放:
lc.sinks.sink_hdfs.hdfs.path = /user/hive/work/orglog.db/%{category}/dt=%Y%m%d/hour=%H
HdfsS ink中处理每条event时,都要根据配置获取此event应该写入的Hdfs path和filename,默认的获取方法是通过正则表达式替换配置中的变量,获取真实的path和filename。因为此过程是每条event都要做的操作,耗时很长。通过我们的测试,20万条日志,这个操作要耗时6-8s左右。
由于我们目前的path和filename有固定的模式,可以通过字符串拼接获得。而后者比正则匹配快几十倍。拼接定符串的方式,20万条日志的操作只需要几百毫秒。
3.3 HdfsSink的b/m/s优化
在我们初始的设计中,所有的日志都通过一个Channel和一个HdfsSink写到Hdfs上。我们来看一看这样做有什么问题。
首先,我们来看一下HdfsSink在发送数据的逻辑:
//从Channel中取batchSize大小的events
for (txnEventCount = 0; txnEventCount < batchSize; txnEventCount++) {
//对每条日志根据category append到相应的bucketWriter上;
bucketWriter.append(event);
}
for (BucketWriter bucketWriter : writers) {
//然后对每一个bucketWriter调用相应的flush方法将数据flush到Hdfs上
bucketWriter.flush();
}
假设我们的系统中有100个category,batchSize大小设置为20万。则每20万条数据,就需要对100个文件进行append或者flush操作。
其次,对于我们的日志来说,基本符合80/20原则。即20%的category产生了系统80%的日志量。这样对大部分日志来说,每20万条可能只包含几条日志,也需要往Hdfs上flush一次。
上述的情况会导致HdfsSink写Hdfs的效率极差。下图是单Channel的情况下每小时的发送量和写hdfs的时间趋势图。
鉴于这种实际应用场景,我们把日志进行了大小归类,分为big, middle和small三类,这样可以有效的避免小日志跟着大日志一起频繁的flush,提升效果明显。下图是分队列后big队列的每小时的发送量和写hdfs的时间趋势图。
- 大小: 60.8 KB
- 大小: 67.1 KB
分享到:
相关推荐
本文对基于 Flume 的美团日志收集系统进行了详细的介绍和分析,包括日志收集系统的架构设计、Flume-NG 与 Scribe 的比较、美团日志收集系统的架构和设计、美团日志收集系统的设计和优化等方面。同时,本文还对 Flume...
总之,《基于Flume的美团日志收集系统》详细介绍了如何利用Flume构建一个强大的日志收集平台,涵盖了从系统架构设计、Flume与Scribe的对比、Flume的特性到实际运行中的优化策略等多个方面。这个系统体现了大数据时代...
该系统基于Flume、Elasticsearch和Kibana等技术手段,能够对海量日志数据进行实时采集、处理和分析,并提供可视化的展示结果。 分布式日志采集系统的需求 随着互联网的发展和大数据技术的兴起,日志数据的规模日益...
为应对这一挑战,本文研究了一种基于Flume的分布式日志采集分析系统,结合Hadoop、HDFS(Hadoop Distributed File System)和Kafka等技术手段,提供了新的设计思路和架构方案。 日志采集是大数据处理中的关键环节,...
自己制作的基于flume的日志收集系统概念介绍,非常浅显,不算是资源,拿出来与大家讨论
在大数据处理领域,Apache Flume是一个高度可靠且易用的数据收集系统,主要用于聚合、聚合和移动大量日志数据。在美团这样的大型互联网公司中,Flume的应用至关重要,它扮演着数据流处理的核心角色。本文将深入探讨...
基于 Flume+ Kafka+ Spark Streaming 实现实时监控输出日志的报警系统的 Spark Streaming 程序代码。 基于 Flume+Kafka+Spark Streaming 实现实时监控输出日志的报警系统的 Spark Streaming 程序代码,博客链接: ...
【网络安全可视化系统】基于Flume的网络安全可视化系统是一种利用Flume高效处理日志信息的工具,结合数据可视化技术,以实现实时收集和分析网络安全日志,并揭示隐藏的网络异常信息的方法。传统的基于日志的入侵检测...
基于Flume&spark&Flask的分布式实时日志分析与入侵检测系统源码+文档说明基于Flume&spark&Flask的分布式实时日志分析与入侵检测系统源码+文档说明基于Flume&spark&Flask的分布式实时日志分析与入侵检测系统源码+文档...
2. Flume收集:Flume代理安装在各个日志源上,定期或实时抓取日志数据。 3. 数据传输:Flume将收集到的数据发送到Kafka主题。 4. Kafka缓冲:Kafka作为数据缓冲区,接收并存储来自Flume的日志数据,提供高可用性和...
根据提供的文件信息,实际内容与标题及描述严重不符,但基于题目要求,我们将重点解析标题“Flume 构建高可用、可扩展的海量日志采集系统”以及描述“flume 大数据导入数据首选”所涉及的知识点。 ### Flume 构建高...
基于 Flume 的海量日志统一分析平台可以满足大数据时代的日志收集和分析需求,提供了高效、可靠、实时的日志收集和分析解决方案。该平台可以应用于各种 industries,例如金融、电信、医疗等行业,帮助企业实时地监控...
基于Apache Flume和Hadoop的大数据日志收集系统,不仅能够有效解决日志数据的收集问题,还能支持多样化的数据分析需求。通过该系统,企业可以更好地监控和理解其应用程序的运行状态,进而提升服务质量。此外,该系统...
本科毕业设计项目,基于spark streaming+flume+kafka+hbase的实时日志处理分析系统 基于spark streaming+flume+kafka+hbase的实时日志处理分析系统 本科毕业设计项目,基于spark streaming+flume+kafka+hbase的...
Flume日志收集与MapReduce模式
这里提到的"基于Flume+kafka+spark大型电商网站日志分析系统(离线+实时)"就是一个这样的解决方案,结合了三个关键组件:Apache Flume、Apache Kafka和Apache Spark。下面将详细介绍这三个技术及其在系统中的作用。...
《构建基于Flume + Kafka + Spark...综上,基于Flume、Kafka 和Spark 构建的电商实时访问日志分析系统,为企业提供了强大的数据处理能力,能够快速响应市场变化,提升决策效率,是电商行业的数据驱动型运营的必备工具。