- 浏览: 228725 次
- 性别:
- 来自: 北京
文章分类
最新评论
处理百万级以上的数据提高查询速度的方法
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在where及orderby涉及的列上建立索引。
3.应尽量避免在where子句中对字段进行null值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
selectidfromtwherenumisnull
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
selectidfromtwherenum=0
4.应尽量避免在where子句中使用or来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
selectidfromtwherenum=10ornum=20
可以这样查询:
selectidfromtwherenum=10
unionall
selectidfromtwherenum=20
5.下面的查询也将导致全表扫描:(不能前置百分号)
selectidfromtwherenamelike‘%abc%’
若要提高效率,可以考虑全文检索。
6.in和notin也要慎用,否则会导致全表扫描,如:
selectidfromtwherenumin(1,2,3)
对于连续的数值,能用between就不要用in了:
selectidfromtwherenumbetween1and3
7.如果在where子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
selectidfromtwherenum=@num
可以改为强制查询使用索引:
selectidfromtwith(index(索引名))wherenum=@num
8.应尽量避免在where子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
selectidfromtwherenum/2=100
应改为:
selectidfromtwherenum=100*2
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
selectidfromtwheresubstring(name,1,3)=’abc’–name以abc开头的id
selectidfromtwheredatediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id
应改为:
selectidfromtwherenamelike‘abc%’
selectidfromtwherecreatedate>=’2005-11-30′andcreatedate<’2005-12-1′
10.不要在where子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
selectcol1,col2into#tfromtwhere1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
createtable#t(…)
13.很多时候用exists代替in是一个好的选择:
selectnumfromawherenumin(selectnumfromb)
用下面的语句替换:
selectnumfromawhereexists(select1frombwherenum=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15.索引并不是越多越好,索引固然可以提高相应的select的效率,但同时也降低了insert及update的效率,因为insert或update时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16.应尽可能的避免更新clustered索引数据列,因为clustered索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新clustered索引数据列,那么需要考虑是否应将该索引建为clustered索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用varchar/nvarchar代替char/nchar,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用select*fromt,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用selectinto代替createtable,避免造成大量log,以提高速度;如果数据量不大,为了缓和系统表的资源,应先createtable,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先truncatetable,然后droptable,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27.与临时表一样,游标并不是不可使用。对小型数据集使用FAST_FORWARD游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置SETNOCOUNTON,在结束时设置SETNOCOUNTOFF。无需在执行存储过程和触发器的每个语句后向客户端发送DONE_IN_PROC消息。
29.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
30.尽量避免大事务操作,提高系统并发能力。
查询速度慢的原因:
1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)
2、I/O吞吐量小,形成了瓶颈效应。
3、没有创建计算列导致查询不优化。
4、内存不足
5、网络速度慢
6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)
7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)
8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。
9、返回了不必要的行和列
10、查询语句不好,没有优化
可以通过如下方法来优化查询 |
1.应尽量避免在where子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在where及orderby涉及的列上建立索引。
3.应尽量避免在where子句中对字段进行null值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
selectidfromtwherenumisnull
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
selectidfromtwherenum=0
4.应尽量避免在where子句中使用or来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
selectidfromtwherenum=10ornum=20
可以这样查询:
selectidfromtwherenum=10
unionall
selectidfromtwherenum=20
5.下面的查询也将导致全表扫描:(不能前置百分号)
selectidfromtwherenamelike‘%abc%’
若要提高效率,可以考虑全文检索。
6.in和notin也要慎用,否则会导致全表扫描,如:
selectidfromtwherenumin(1,2,3)
对于连续的数值,能用between就不要用in了:
selectidfromtwherenumbetween1and3
7.如果在where子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
selectidfromtwherenum=@num
可以改为强制查询使用索引:
selectidfromtwith(index(索引名))wherenum=@num
8.应尽量避免在where子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
selectidfromtwherenum/2=100
应改为:
selectidfromtwherenum=100*2
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
selectidfromtwheresubstring(name,1,3)=’abc’–name以abc开头的id
selectidfromtwheredatediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id
应改为:
selectidfromtwherenamelike‘abc%’
selectidfromtwherecreatedate>=’2005-11-30′andcreatedate<’2005-12-1′
10.不要在where子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
selectcol1,col2into#tfromtwhere1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
createtable#t(…)
13.很多时候用exists代替in是一个好的选择:
selectnumfromawherenumin(selectnumfromb)
用下面的语句替换:
selectnumfromawhereexists(select1frombwherenum=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15.索引并不是越多越好,索引固然可以提高相应的select的效率,但同时也降低了insert及update的效率,因为insert或update时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16.应尽可能的避免更新clustered索引数据列,因为clustered索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新clustered索引数据列,那么需要考虑是否应将该索引建为clustered索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用varchar/nvarchar代替char/nchar,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用select*fromt,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用selectinto代替createtable,避免造成大量log,以提高速度;如果数据量不大,为了缓和系统表的资源,应先createtable,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先truncatetable,然后droptable,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27.与临时表一样,游标并不是不可使用。对小型数据集使用FAST_FORWARD游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置SETNOCOUNTON,在结束时设置SETNOCOUNTOFF。无需在执行存储过程和触发器的每个语句后向客户端发送DONE_IN_PROC消息。
29.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
30.尽量避免大事务操作,提高系统并发能力。
查询速度慢的原因:
1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)
2、I/O吞吐量小,形成了瓶颈效应。
3、没有创建计算列导致查询不优化。
4、内存不足
5、网络速度慢
6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)
7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)
8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。
9、返回了不必要的行和列
10、查询语句不好,没有优化
可以通过如下方法来优化查询 |
相关推荐
提高 SQL 处理查询上百万条数据库的速度 在处理大量数据库查询时,SQL 的性能是一个关键问题。以下是 15 条措施,以提高 SQL 处理查询上百万条数据库的速度: 1. 对查询进行优化,尽量避免全表扫描,首先应考虑在 ...
在MySQL中,面对百万级数据量的分页查询,如何高效地进行操作并优化查询性能是数据库管理员和开发...总的来说,处理百万级数据量的分页查询,关键在于合理利用索引、优化查询结构,并根据具体场景选择合适的查询策略。
对于拥有百万级以上记录的数据库表,通过合理的表结构设计以及恰当的索引策略,可以极大程度地提高查询效率。此外,还需要定期审查和调整索引设置,以适应不断变化的数据特性及查询模式,确保数据库系统的高性能运行...
在IT行业中,处理大量...总的来说,正确地在Excel和SQL Server之间导入导出百万级数据需要理解两者的特点,选择合适的方法,并注意数据处理的最佳实践。在实际操作中,应根据具体需求和资源限制来选择最适合的方案。
在地理信息系统(GIS)数据处理中,提高数据处理速度是一个关键问题。随着数据量的不断增加,传统的机械硬盘在数据读写速度上的局限性越来越明显。为了应对这一挑战,研究者提出了利用虚拟硬盘技术来提升GIS数据处理...
本文将围绕“mysql百万级测试数据下载 300W条”这个主题,深入探讨如何处理和利用这样的大数据量进行测试。 首先,`test.sql`文件是一个MySQL数据库的SQL脚本文件,通常包含创建表结构、插入数据等操作。在这个场景...
在数据预处理中,通常采用肖维勒剔除异常值准则来处理数据。但是,这种方法存在一定的局限性,例如在传感器的原始量测信号夹杂着不同类型的复杂噪声信号或者高频干扰时,原算法就受到限制,无法从根本上消除噪声,...
实验结果表明,基于改进型卡尔曼滤波的电机速度数据处理方法可以提高电机速度数据的精度和可靠性。 卡尔曼滤波是一种常用的信号处理方法,它可以对信号进行滤波和预测。但是,传统的卡尔曼滤波算法存在一些缺陷,如...
【标题】:“百万数据查询优化海量...以上策略是优化海量数据查询的基础方法,实际应用中,还需要根据具体数据库管理系统和业务需求进行调整。持续监控和分析查询性能,结合数据库调优工具,能进一步提升系统整体性能。
3. **性能测试:** 对于百万级数据,性能测试是为了评估系统的处理能力,包括查询速度、内存占用和并发性能等。通常会使用模拟数据进行测试,以确保在大量数据下系统仍然稳定高效。 4. **EF插件:** 开发者可能使用...
"利用DB-Library访问SQL Server来提高数据处理速度的方法" DB-Library是Sybase公司开发的一种数据库访问接口,它提供了一个统一的接口来访问不同的数据库管理系统,包括SQL Server。DB-Library可以帮助开发者快速地...
除了以上方法,还可以考虑使用其他高效的库,如使用CSV格式作为临时存储,或者使用数据库(如SQLite)进行中间处理。此外,还可以利用多线程或分布式计算框架(如Apache Spark)来并行处理数据,进一步提升效率。 ...
从给定的文件标题、描述、标签以及部分内容中,我们可以提炼出关于MySQL百万级数据优化的关键知识点,这些知识点涵盖了系统架构、硬件选择、文件系统、应用程序接口(API)、查询优化等多个方面,对于处理大规模...
并行计算技术是一种利用多核处理器并行处理数据的计算方法,它通过将工作任务分解为多个可以同时执行的部分,从而加速解决问题的速度。这种方法特别适用于处理数据量大、处理模型复杂的成像测井数据,这类数据在石油...
然而,在处理大量数据时,如何优化查询统计速度成为了提高整体系统性能的关键因素之一。本文将围绕如何提升Oracle数据库的查询统计速度进行深入探讨,并结合实际应用场景给出具体的优化建议。 #### 一、理解Oracle...
海量数据处理分析方法是现代信息技术领域中的关键技能,尤其对于涉及检索和数据分析的工作岗位而言,掌握这些方法显得尤为重要。随着互联网和物联网的发展,数据量呈现爆炸式增长,传统的数据处理手段已经无法应对...
在Java编程中,多线程是提升程序性能和并发处理能力的重要手段,特别是在处理大量数据时,如数据库的百万级数据读取。本篇将深入探讨如何利用Java多线程技术来优化这种高负载场景。 首先,理解Java多线程的基础至关...
### PHP处理上百万条数据库如何提高处理查询速度 在当今数据密集型的应用环境中,高效地处理大规模数据库成为了软件开发人员必须面对的一项挑战。特别是在使用PHP这样的动态语言进行Web开发时,如何有效地处理上...