来源:http://www.hxstrive.com/article/111.htm
一、在Java运行时环境中,对于任意一个类,能否知道这个类有哪些属性和方法?对于任意一个对象,能否调用它的任意一个方法?答案是肯定的。这种动态获取类的信息以及动态调用对象的方法的功能来自于Java 语言的反射(Reflection)机制。
二、反射能干什么?
a、在运行时判断任意一个对象所属的类。
b、在运行时构造任意一个类的对象。
c、在运行时判断任意一个类所具有的成员变量和方法。
d、在运行时调用任意一个对象的方法(包括私有方法,但是破坏了封装性)
三、Reflection 是Java被视为动态(或准动态)语言的一个关键性质。这个机制允许程序在运行时透过Reflection APIs取得任何一个已知名称的class的内部信息,包括其modifiers(诸如public, static 等等)、superclass(例如Object)、实现之interfaces(例如Serializable),也包括fields和methods的所有信息,并可于运行时改变fields内容或调用methods
四、动态语言
一般而言,开发者社群说到动态语言,大致认同的一个定义是:“程序运行时,允许改变程序结构或变量类型,这种语言称为动态语言”。从这个观点看,Perl,Python,Ruby是动态语言,C++,Java,C#不是动态语言
尽管在这样的定义与分类下Java不是动态语言,它却有着一个非常突出的动态相关机制:Reflection。这个字的意思是“反射、映象、倒影”,用在Java身上指的是我们可以于运行时加载、探知、使用编译期间完全未知的classes。换句话说,Java程序可以加载一个运行时才得知名称的class,获悉其完整构造(但不包括methods定义),并生成其对象实体、或对其fields设值、或唤起其methods。这种“看透class”的能力(the ability of the program to examine itself)被称为introspection(内省、内观、反省)。Reflection和introspection是常被并提的两个术语
五、Java Reflection API 简介
在JDK中,主要由以下类来实现Java反射机制,这些类都位于java.lang.reflect包中
a、Class类:代表一个类。
b、Field 类:代表类的成员变量(成员变量也称为类的属性)。
c、Method类:代表类的方法。
d、Constructor 类:代表类的构造方法。
e、Array类:提供了动态创建数组,以及访问数组的元素的静态方法
1、例程Reflect类演示了Reflection API的基本作用,它读取命令行参数指定的类名,然后打印这个类所具有的方法信息
package
reflected;
import
java.lang.reflect.Method;
/**
* 演示反射机制
* @author HuangXin
* 通过类的全名,获得类中的所有方法
*/
public
class
Reflect {
public
static
void
main(String[] args)
throws
Exception{
Class<?> classType = Class.forName(args[
0
]);
//获得指定类的class对象
Method[] methods = classType.getDeclaredMethods();
//返回classType对象中的所有已经声明的方法
for
(Method m : methods){
//打印所有的方法名
System.out.println(m);
}
}
}
运行:java Reflect java.lang.String
2、例程ReflectTester 类进一步演示了Reflection API的基本使用方法。ReflectTester类有一个copy(Object object)方法,这个方法能够创建一个和参数object 同样类型的对象,然后把object对象中的所有属性拷贝到新建的对象中,并将它返回。这个例子只能复制简单的JavaBean,假定JavaBean 的每个属性都有public 类型的getXXX()和setXXX()方法。
package
reflected;
import
java.lang.reflect.Field;
import
java.lang.reflect.Method;
/**
* 演示使用反射机制调用getter和settled方法,操作属性
* @author HuangXin
*
*/
public
class
RefelctTester {
//复制一份副本
public
Object copy(Object object)
throws
Exception{
Class<?> classType = object.getClass();
//使用与所有的构造方法
Object objectType = classType.getConstructor(
new
Class[]{}).newInstance(
new
Object[]{});
//Object objectType = classType.newInstance();
//等价于
//Object objectType = classType.newInstance();
//获得所有的属性
Field[] fields = classType.getDeclaredFields();
for
(
int
i=
0
;i<fields.length;i++){
Field field = fields[i];
String fieldName = field.getName();
String first = fieldName.substring(
0
,
1
).toUpperCase();
String getMethodName =
"get"
+ first + fieldName.substring(
1
);
String setMethodName =
"set"
+ first + fieldName.substring(
1
);
Method getMeth = classType.getMethod(getMethodName,
new
Class[]{});
Method setMeth = classType.getMethod(setMethodName,
new
Class[]{field.getType()});
Object value = getMeth.invoke(object,
new
Object[]{});
setMeth.invoke(objectType,
new
Object[]{value});
}
return
objectType;
}
public
static
void
main(String[] args)
throws
Exception {
User user =
new
User();
user.setId(
new
Long(
1
));
user.setUsername(
"zhangjia"
);
user.setAge(
new
Integer(
22
));
User userCopy = (User)
new
RefelctTester().copy(user);
System.out.println(userCopy.getId()+
","
+userCopy.getUsername()+
","
+userCopy.getAge());
System.out.println(user.getId()+
","
+user.getUsername()+
","
+user.getAge());
}
}
class
User{
private
Long id;
private
String username;
private
int
age;
public
User(){
}
public
Long getId() {
return
id;
}
public
void
setId(Long id) {
this
.id = id;
}
public
String getUsername() {
return
username;
}
public
void
setUsername(String username) {
this
.username = username;
}
public
int
getAge() {
return
age;
}
public
void
setAge(
int
age) {
this
.age = age;
}
}
(1)获得对象的类型:ReflectTester 类的copy(Object object)方法依次执行以下步骤
Class classType=object.getClass();
System.out.println("Class:"+classType.getName());
在java.lang.Object 类中定义了getClass()方法,因此对于任意一个Java对象,都可以通过此方法获得对象的类型。Class类是Reflection API 中的核心类,它有以下方法
getName():获得类的完整名字。
getFields():获得类的public类型的属性。
getDeclaredFields():获得类的所有属性。
getMethods():获得类的public类型的方法。
getDeclaredMethods():获得类的所有方法。
getMethod(String name, Class[] parameterTypes):获得类的特定方法,name参数指定方法的名字,parameterTypes 参数指定方法的参数类型。
getConstructors():获得类的public类型的构造方法。
getConstructor(Class[] parameterTypes):获得类的特定构造方法,parameterTypes 参数指定构造方法的参数类型。
newInstance():通过类的不带参数的构造方法创建这个类的一个对象。
(2)通过默认构造方法创建一个新对象:
Object objectCopy=classType.getConstructor(new Class[]{}).newInstance(new Object[]{});
以上代码先调用Class类的getConstructor()方法获得一个Constructor 对象,它代表默认的构造方法,然后调用Constructor对象的newInstance()方法构造一个实例。
(3)获得对象的所有属性:
Field fields[]=classType.getDeclaredFields();
Class 类的getDeclaredFields()方法返回类的所有属性,包括public、protected、默认和private访问级别的属性
(4)获得每个属性相应的getXXX()和setXXX()方法,然后执行这些方法,把原来对象的属性拷贝到新的对象中
3、在例程InvokeTest类的main()方法中,运用反射机制调用一个InvokeTester对象的add()和echo()方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
package reflected;
import java.lang.reflect.Method;
/** * 演示用反射机制调用类中的方法
* @author
*
*/
public class InvokeTest {
public int add( int sum1, int sum2){
return sum1+sum2;
}
public String echo(String message){
return "goods:" +message;
}
public static void main(String[] args) throws Exception {
//获得INnvokeTest类的Class对象
Class<?> classType = InvokeTest. class ;
//创建classType对象的实例(此种方式只能创建默认的构造方法,即没有参数的构造方法)
Object invokeTester = classType.newInstance();
//返回指定的方法,方法可以用方法名和参数列表区别
Method addMethod = classType.getMethod( "add" , new Class[]{ int . class , int . class });
//调用方法
Object result = addMethod.invoke(invokeTester, new Object[]{ 100 , 200 });
System.out.println((Integer)result);
//等价一下代码
//InvokeTest i = new InvokeTest();
//int result = i.add(100,200);
//System.out.println(result);
Method echoMethod = classType.getMethod( "echo" , new Class[]{String. class });
Object result2 = echoMethod.invoke(invokeTester, new Object[]{ "huangxin" });
System.out.println((String)result2);
}
} |
add()方法的两个参数为int 类型,获得表示add()方法的Method对象的代码如下:
Method addMethod=classType.getMethod("add",new Class[]{int.class,int.class});
Method类的invoke(Object obj,Object args[])方法接收的参数必须为对象,如果参数为基本类型数据,必须转换为相应的包装类型的对象。invoke()方法的返回值总是对象,如果实际被调用的方法的返回类型是基本类型数据,那么invoke()方法会把它转换为相应的包装类型的对象,再将其返回
在本例中,尽管InvokeTester 类的add()方法的两个参数以及返回值都是int类型,调用add Method 对象的invoke()方法时,只能传递Integer 类型的参数,并且invoke()方法的返回类型也是Integer 类型,Integer 类是int 基本类型的包装类:
Object result=addMethod.invoke(invokeTester,
new Object[]{new Integer(100),new Integer(200)});
System.out.println((Integer)result); //result 为Integer类型
4、java.lang.Array 类提供了动态创建和访问数组元素的各种静态方法。例程ArrayTester1 类的main()方法创建了一个长度为10 的字符串数组,接着把索引位置为5 的元素设为“hello”,然后再读取索引位置为5 的元素的值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
package com.langsin.reflection;
import java.lang.reflect.Array;
public class ArrayTester1
{ public static void main(String args[]) throws Exception
{
Class<?> classType = Class.forName( "java.lang.String" );
// 创建一个长度为10的字符串数组
Object array = Array.newInstance(classType, 10 );
// 把索引位置为5的元素设为"hello"
Array.set(array, 5 , "hello" );
// 获得索引位置为5的元素的值
String s = (String) Array.get(array, 5 );
System.out.println(s);
}
} |
5、例程ArrayTester2 类的main()方法创建了一个 5 x 10 x 15 的整型数组,并把索引位置为[3][5][10] 的元素的值为设37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
package com.langsin.reflection;
import java.lang.reflect.Array;
public class ArrayTester2 {
public static void main(String args[]){
int [] dims = new int [] { 5 , 10 , 15 };
Object array = Array.newInstance(Integer.TYPE, dims);
Object arrayObj = Array.get(array, 3 );
Class<?> cls = arrayObj.getClass().getComponentType();
System.out.println(cls);
arrayObj = Array.get(arrayObj, 5 );
Array.setInt(arrayObj, 10 , 37 );
int arrayCast[][][] = ( int [][][]) array;
System.out.println(arrayCast[ 3 ][ 5 ][ 10 ]);
}
} |
六、Class
众所周知Java有个Object class,是所有Java classes的继承根源,其内声明了数个应该在所有Java class中被改写的methods:hashCode()、equals()、clone()、toString()、getClass()等。其中getClass()返回一个Class object。
Class class十分特殊。它和一般classes一样继承自Object,其实体用以表达Java程序运行时的classes和interfaces,也用来表达enum、array、primitive Java types
(boolean, byte, char, short, int, long, float, double)以及关键词void。当一个class被加载,或当加载器(class loader)的defineClass()被JVM调用,JVM 便自动产生一个Class object。如果您想借由“修改Java标准库源码”来观察Class object的实际生成时机(例如在Class的constructor内添加一个println()),不能够!因为Class并没有public constructor
Class是Reflection起源。针对任何您想探勘的class,唯有先为它产生一个Class object,接下来才能经由后者唤起为数十多个的Reflection APIs
Java允许我们从多种途径为一个class生成对应的Class object:
a、运用getClass()注:每个类都有此函数
1
2
|
String str = "abc" ;
Class c1 = str.getClass(); |
b、运用Class.getSuperclass()
1
2
3
|
Button b = new Button();
Class c1 = b.getClass(); Class c2 = c1.getSuperclass(); |
c、运行static method Class.forName()(最常用)
1
|
Class c1 = Class.forName( "java.lang.String" );
|
d、运用.class语法
1
2
|
Class c1 = String. class ;
Class c5 = int []. class ;
|
e、运用primitive wrapper classes的TYPE语法
1
2
|
Class c1 = Boolean.TYPE; Class c2 = Byte.TYPE; |
实例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
package reflected;
import java.awt.Button;
public class GetSuperClassTest {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Button button = new Button();
Class<?> c1 = button.getClass(); //返回button的class对象
System.out.println(c1);
Class<?> c2 = c1.getSuperclass(); //返回button的父对象
System.out.println(c2);
Class<?> c3 = c2.getSuperclass(); //返回button的父对象的父对象
System.out.println(c3);
}
} |
七、运行时生成instances
欲生成对象实体,在Reflection 动态机制中有两种作法,一个针对“无自变量ctor”,一个针对“带参数ctor”。如果欲调用的是“带参数ctor“就比较麻烦些,不再调用Class的newInstance(),而是调用Constructor 的newInstance()。首先准备一个Class[]做为ctor的参数类型(本例指定为一个double和一个int),然后以此为自变量调用getConstructor(),获得一个专属ctor。接下来再准备一个Object[] 做为ctor实参值(本例指定3.14159和125),调用上述专属ctor的newInstance()。
如果是无参构造方法:
1
2
|
Class c = Test. class ;
Object obj = c.newInstance(); |
有参构造方法:
1
2
3
4
5
|
Class c = Test. class ;
Class[] classType = {Integer. class ,String. class };
Constructor constructor = c.getConstructor(classType); Object[] param = { 23 , "haha" };
Object obj = constructor.newInstance(param); |
八、运行时调用methods
这个动作和上述调用“带参数之ctor”相当类似。首先准备一个Class[]做为参数类型(本例指定其中一个是String,另一个是Hashtable),然后以此为自变量调用getMethod(),获得特定的Method object。接下来准备一个Object[]放置自变量,然后调用上述所得之特定Method object的invoke()。
为什么获得Method object时不需指定回返类型?因为method overloading机制要求signature必须唯一,而回返类型并非signature的一个成份。换句话说,只要指定了method名称和参数列,就一定指出了一个独一无二的method。如:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
Class c = Test.calss; Class types = new Class[ 2 ];
types[ 0 ] = Class.forName( "java.lang.String" );
types[ 1 ] = Class.forName( "java.lang.Integer" );
Methoethod = c.getMethod( "testMethod" ,types);
Test obj = new Test();
Object[] param = { "haha" , 23 };
Object r = method.invoke(obj,param); // ****************************** package reflected;
import java.lang.reflect.Method;
@SuppressWarnings ( "unchecked" )
public class MethodTest {
public static void test(Object obj) throws Exception{
Class<MyMethod> type = (Class<MyMethod>)obj.getClass();
Object objectType = type.getConstructor( new Class[]{}).newInstance( new Object[]{});
Method method = type.getMethod( "prin" , new Class[]{});
method.invoke(objectType, new Object[]{});
method = type.getMethod( "add" , new Class[]{ int . class , int . class });
Object result = method.invoke(objectType, new Object[]{ 3 , 4 });
System.out.println(result);
System.out.println(result.getClass().getName());
}
public static void main(String[] args) {
MyMethod p = new MyMethod();
try {
test(p);
} catch (Exception e) {
e.printStackTrace();
}
}
} class MyMethod{
public MyMethod(){}
public void prin(){
System.out.println( "Hello World!" );
}
public int add( int x, int y){
return x + y;
}
}
|
相关推荐
"H6逆变器拓扑:离网并网仿真模型研究,支持多模式功率调节与共模电流抑制",#H6逆变器拓扑并离网仿真模型 逆变器拓扑为:h6逆变器拓扑。 仿真说明: 1.离网时支持非单位功率因数负载。 2.并网时支持功率因数调节。 3.具有共模电流抑制能力(共模电压稳定在Udc 2)。 4.有两种滤波器版本(LC LCL)。 5.LC版本下,参考电流20A时所对应的电流THD约为1%。 此外,采用PR单环控制,具有sogipll锁相环,lcl滤波器。 注:(V0001) Plecs版本4.7.3及以上 ,H6逆变器拓扑;离网仿真;并网仿真;非单位功率因数负载;功率因数调节;共模电流抑制;共模电压稳定;滤波器版本;LC LCL滤波器;PR单环控制;sogipll锁相环;Plecs版本4.7.3,H6逆变器拓扑的并离网仿真模型
大厂PFC与全桥LLC集成变频控制的两相交错TCM图腾柱PWM代码实现方法及优化策略,大厂量产的两相交错TCM图腾柱变频控制PFC+全桥LLC源代码 PFC可通过变频控制实现软开关 ,两相交错TCM; 图腾柱变频控制; PFC; 全桥LLC; 软开关。,大厂高频两相交错TCM图腾柱PFC+全桥LLC变频控制源代码
台达PLC高效自动追剪系统:自动计算,稳定运行,可靠编程的自动化解决方案,台达PLC追剪追剪追剪加+剪切 ,编码器追踪送料速度和送料长度,程序可设置滚轮直径,编码器分辨率,电机分辨率及丝杠导程。 根据输入参数自动计算。 程序带手动正反转,自动追剪切断,带手动复位及回原点,调节方便。 实用已在机床上稳定运行两年,程序成熟可靠,程序是我自己写的算法,时请认准我本人,其他人均为盗版,盗版需谨慎。 台达plc,触摸屏用中达一体机触摸屏。 ,核心关键词:台达PLC;追剪;编码器追踪;送料速度和送料长度;程序设置;滚轮直径;电机分辨率;丝杠导程;自动计算;手动正反转;自动追剪切断;手动复位;回原点;程序成熟可靠;中达一体机触摸屏。,"台达PLC自动化追剪系统:精确编码追踪与手动控制集成"
项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
# 基于Arduino的BSides Cheltenham 2024 UFO徽章系统 ## 项目简介 这是一个为BSides Cheltenham 2024定制的UFO徽章系统项目。项目包含电路板设计、Arduino代码以及配件清单等。通过此项目,参与者可以制作自己的专属徽章,体验科技与传统结合的乐趣。 ## 项目的主要特性和功能 1. 电路板设计使用Eagle工具设计的电路板,包括PCB文件和元件布局。 2. Arduino代码提供基于ATTiny402微控制器的Arduino代码,用于驱动徽章的硬件功能。 3. 定制设计文件上传了原始矢量设计文件,可根据需要进行修改和个性化定制。 4. 可定制化强可以通过简单的修改代码和更换硬件实现多种功能,比如加入LED灯显示效果、按键交互等。 ## 安装使用步骤 以下步骤假设用户已经下载了本项目的源码文件 1. 获取源码文件下载项目源码文件并解压。
基于西门子S7-200 PLC与组态王软件的洗衣机控制系统设计优化方案 No.710,No.710 基于西门子S7-200 PLC和组态王组态洗衣机控制系统设计 ,基于西门子S7-200 PLC; 洗衣机控制系统设计; 组态王组态; 控制系统设计。,西门子PLC与组态王洗衣控制系统的设计与实施。
2024免费毕业设计成品,包括源码+数据库+往届论文资料 启动教程:https://www.bilibili.com/video/BV11ktveuE2d 讲解视频:https://www.bilibili.com/video/BV1YfkHYwEME 二次开发教程:https://www.bilibili.com/video/BV1Cw2rY1ErC
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
"西门子224XP与昆仑通态触摸屏结合的螺杆式空压机工频运行系统:程序注释详尽,直接应用于工程实践的变频机替代方案",螺杆式空压机工频运行,变频机不能用使用西门子224xp 十昆仑通态触摸屏,程序有注释,可直接用于工程 ,螺杆式空压机; 工频运行; 变频机; 不可用; 西门子224xp; 昆仑通态触摸屏; 程序注释; 工程使用,"西门子224XP+昆仑通态触摸屏:螺杆空压机工频运行程序"
基于CNN-BiLSTM-SE注意力机制的时序预测模型:MATLAB环境下的数据回归分析与应用评估,基于卷积神经网络-双向长短时记忆网络结合SE注意力机制的时间序列预测(CNN-BiLSTM-SE) 基于MATLAB环境 替自己的数据即可 基本流程:首先通过卷积神经网络CNN进行特征提取,然后通过通道注意力机制SE对不同的特征赋予不同的权重,最后通过双向长短时记忆网络BiLSTM进行时间序列预测 数据回归预测评价指标为RMSE MAE MBE R2 ,核心关键词:卷积神经网络(CNN); 双向长短时记忆网络(BiLSTM); SE注意力机制; 时间序列预测; MATLAB环境; 特征提取; 权重赋予; 数据回归预测; 评价指标(RMSE、MAE、MBE、R2)。,CNN-BiLSTM-SE注意力机制:MATLAB环境下的时间序列预测基本流程
"MATLAB R2018A中基于超高斯全自动组织图像盲彩色反卷积方法研究——一种下采样预设值优化策略及参数设定",MATLAB环境下基于超高斯全自动组织图像盲彩色反卷积方法 算法运行环境为MATLAB R2018A,压缩包=数据+代码+参考。 opts.prescale = 1; %% downsampling opts.xk_iter = 5; %% the iterations opts.k_thresh = 1 20; opts.kernel_size = 51; ,MATLAB;超高斯全自动组织图像盲彩色反卷积方法;R2018A;压缩包;参数设置;opts.prescale;opts.xk_iter;opts.k_thresh;opts.kernel_size,MATLAB超高斯图像盲彩色反卷积算法v1.0
基于Omron PLC与MCGS组态的5层电梯控制系统优化设计:细节分析与工程实现,No.778 基于Omron欧姆龙PLC和MCGS组态5层五层电梯控制系统设计 ,基于Omron PLC; MCGS组态; 5层电梯; 控制系统设计,Omron PLC与MCGS组态五层电梯控制系统设计
"风能储能协同运行模型:永磁风机与储能系统的高效整合及控制策略研究【含详细参数选择与建模过程参考】",风力发电+储能并网协同运行模型【含个人笔记、参数选择参考资料】 包含永磁风机发电机、储能系统、单极单相并离网逆变器及其各自控制系统(也可以按照需求改为三相并网) 永磁直驱风机:机侧变流器采用转速外环电流内环的双闭环控制策略,爬山搜索法实现最大功率点跟踪控制。 储能电池采用buck-boost双向DCDC变器 控制策略采用电压外环电流内环双闭环控制 稳定直流母线电压400V恒定,电压纹波<1% 逆变并网采用单极调制,开关损耗大幅降低 逆变器采用电网电压前馈、电流环、锁相环控制,对于电网中含有的三次谐波有明显的抗干扰效果。 并网电流THD低至1.39%,满足并网要求 附带参考资料、建模过程参考文件夹(万字以上),含参数计算,亦有本人笔记,整理不易 ,风力发电; 储能并网; 永磁风机发电机; 控制系统; 储能系统; DCDC变换器; 电压控制; 逆变并网; 谐波抗干扰; 参数选择。,"协同运行模型:永磁风机储能系统及其控制系统设计与参数选择参考"
"X00133土壤侵蚀分析:R语言源码、数据集与效果图综合展示",X00133-土壤侵蚀数据分析R语言源码,数据集,和效果图 ,X00133;土壤侵蚀数据分析;R语言源码;数据集;效果图,"R语言源码分析X00133土壤侵蚀数据集与效果图展示"
MAC电脑QT安装资源包(一)
锂枝晶生长与隔膜特性研究:隔膜厚度和表面涂层对应力的补充影响分析,相场锂枝晶-隔膜厚度和表面涂层对枝晶生长影响(补充应力) 参考文献:Influences of Separator Thickness and Surface Coating on Lithium Dendrite Growth: A Phase-Field Study ,相场锂枝晶;隔膜厚度;表面涂层;应力;枝晶生长,相场研究:隔膜厚度与表面涂层对应力下锂枝晶生长的影响
项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
基于三菱PLC与MCGS组态技术的自动门控制系统设计策略与应用,No.1074 基于三菱PLC和MCGS组态的自动门控制系统的设计 ,三菱PLC; MCGS组态; 自动门控制系统; 设计; 编号1074,基于三菱PLC与MCGS组态的自动门系统设计No.1074