正如任何事物一样,软件也有其孕育、诞生、成长、成熟和衰亡的生存过程,一般称其为“软件生命周期”。软件生命周期一般分为6个阶段,即制定计划、需求分析、设计、编码、测试、运行和维护。软件开发的各个阶段之间的关系不可能是顺序且线性的,而应该是带有反馈的迭代过程。在软件工程中,这个复杂的过程用软件开发模型来描述和表示。
软件开发模型是跨越整个软件生存周期的系统开发、运行和维护所实施的全部工作和任务的结构框架,它给出了软件开发活动各阶段之间的关系。目前,常见的软件开发模型大致可分为如下3种类型。
① 以软件需求完全确定为前提的瀑布模型(Waterfall Model)。
② 在软件开发初始阶段只能提供基本需求时采用的渐进式开发模型,如螺旋模型(Spiral Model)。
③ 以形式化开发方法为基础的变换模型(Transformational Model)。
本节将简单地比较并分析瀑布模型、螺旋模型和变换模型等软件开发模型。
1.瀑布模型
瀑布模型即生存周期模型,其核心思想是按工序将问题化简,将功能的实现与设计分开,便于分工协作,即采用结构化的分析与设计方法将逻辑实现与物理实现分开。瀑布模型将软件生命周期划分为软件计划、需求分析和定义、软件设计、软件实现、软件测试、软件运行和维护这6个阶段,规定了它们自上而下、相互衔接的固定次序,如同瀑布流水逐级下落。采用瀑布模型的软件过程如图:
瀑布模型是最早出现的软件开发模型,在软件工程中占有重要的地位,它提供了软件开发的基本框架。瀑布模型的本质是一次通过,即每个活动只执行一次,最后得到软件产品,也称为“线性顺序模型”或者“传统生命周期”。其过程是从上一项活动接收该项活动的工作对象作为输入,利用这一输入实施该项活动应完成的内容给出该项活动的工作成果,并作为输出传给下一项活动。同时评审该项活动的实施,若确认,则继续下一项活动;否则返回前面,甚至更前面的活动。
瀑布模型有利于大型软件开发过程中人员的组织及管理,有利于软件开发方法和工具的研究与使用,从而提高了大型软件项目开发的质量和效率。然而软件开发的实践表明,上述各项活动之间并非完全是自上而下且呈线性图式的,因此瀑布模型存在严重的缺陷。
① 由于开发模型呈线性,所以当开发成果尚未经过测试时,用户无法看到软件的效果。这样软件与用户见面的时间间隔较长,也增加了一定的风险。用户可能需要Demo。
② 在软件开发前期末发现的错误传到后面的开发活动中时,可能会扩散,进而可能会造成整个软件项目开发失败。
③ 在软件需求分析阶段,完全确定用户的所有需求是比较困难的,甚至可以说是不太可能的。
2.螺旋模型
螺旋模型将瀑布和演化模型(Evolution Model)结合起来,它不仅体现了两个模型的优点,而且还强调了其他模型均忽略了的风险分析。这种模型的每一个周期都包括需求定义、风险分析、工程实现和评审4个阶段,由这4个阶段进行迭代。软件开发过程每迭代一次,软件开发又前进一个层次。采用螺旋模型的软件过程如图:
螺旋模型基本做法是在“瀑布模型”的每一个开发阶段前引入一个非常严格的风险识别、风险分析和风险控制,它把软件项目分解成一个个小项目。每个小项目都标识一个或多个主要风险,直到所有的主要风险因素都被确定。
螺旋模型强调风险分析,使得开发人员和用户对每个演化层出现的风险有所了解,继而做出应有的反应,因此特别适用于庞大、复杂并具有高风险的系统。对于这些系统,风险是软件开发不可忽视且潜在的不利因素,它可能在不同程度上损害软件开发过程,影响软件产品的质量。减小软件风险的目标是在造成危害之前,及时对风险进行识别及分析,决定采取何种对策,进而消除或减少风险的损害。
与瀑布模型相比,螺旋模型支持用户需求的动态变化,为用户参与软件开发的所有关键决策提供了方便,有助于提高目标软件的适应能力。并且为项目管理人员及时调整管理决策提供了便利,从而降低了软件开发风险。
但是,我们不能说螺旋模型绝对比其他模型优越,事实上,这种模型也有其自身的如下缺点。
① 采用螺旋模型需要具有相当丰富的风险评估经验和专门知识,在风险较大的项目开发中,如果未能够及时标识风险,势必造成重大损失。
② 过多的迭代次数会增加开发成本,延迟提交时间。
3.变换模型
变换模型是基于形式化规格说明语言及程序变换的软件开发模型,它采用形式化的软件开发方法对形式化的软件规格说明进行一系列自动或半自动的程序变换,最后映射为计算机系统能够接受的程序系统。采用变换模型的软件过程如图
为了确认形式化规格说明与软件需求的一致性,往往以形式化规格说明为基础开发一个软件原型,用户可以从人机界面、系统主要功能和性能等几个方面对原型进行评审。必要时,可以修改软件需求、形式化规格说明和原型,直至原型被确认为止。这时软件开发人员即可对形式化的规格说明进行一系列的程序变换,直至生成计算机系统可以接受的目标代码。
“程序变换”是软件开发的另一种方法,其基本思想是把程序设计的过程分为生成阶段和改进阶段。首先通过对问题的分析制定形式规范并生成一个程序,通常是一种函数型的“递归方程”。然后通过一系列保持正确性的源程序到源程序的变换,把函数型风格转换成过程型风格并进行数据结构和算法的求精,最终得到一个有效的面向过程的程序。这种变换过程是一种严格的形式推导过程,所以只需对变换前的程序的规范加以验证,变换后的程序的正确性将由变换法则的正确性来保证。
变换模型的优点是解决了代码结构经多次修改而变坏的问题,减少了许多中间步骤(如设计、编码和测试等)。但是变换模型仍有较大局限,以形式化开发方法为基础的变换模型需要严格的数学理论和一整套开发环境的支持,目前形式化开发方法在理论、实践和人员培训方面距工程应用尚有一段距离。
4.喷泉模型
喷泉模型是一种以用户需求为动力,以对象为驱动的模型,主要用于描述面向对象的软件开发过程。该模型认为软件开发过程自下而上周期的各阶段是相互重叠和多次反复的,就像水喷上去又可以落下来,类似一个喷泉。各个开发阶段没有特定的次序要求,并且可以交互进行,可以在某个开发阶段中随时补充其他任何开发阶段中的遗漏。采用喷泉模型的软件过程如图
喷泉模型主要用于面向对象的软件项目,软件的某个部分通常被重复多次,相关对象在每次迭代中随之加入渐进的软件成分。各活动之间无明显边界,例如设计和实现之间没有明显的边界,这也称为“喷泉模型的无间隙性”。由于对象概念的引入,表达分析、设计及实现等活动只用对象类和关系,从而可以较容易地实现活动的迭代和无间隙。
喷泉模型不像瀑布模型那样,需要分析活动结束后才开始设计活动,设计活动结束后才开始编码活动。该模型的各个阶段没有明显的界限,开发人员可以同步进行开发。其优点是可以提高软件项目开发效率,节省开发时间,适应于面向对象的软件开发过程。由于喷泉模型在各个开发阶段是重叠的,因此在开发过程中需要大量的开发人员,因此不利于项目的管理。此外这种模型要求严格管理文档,使得审核的难度加大,尤其是面对可能随时加入各种信息、需求与资料的情况。
5.智能模型*
智能模型也称为“基于知识的软件开发模型”,它把瀑布模型和专家系统结合在一起,利用专家系统来帮助软件开发人员的工作。该模型应用基于规则的系统,采用归纳和推理机制,使维护在系统规格说明一级进行。这种模型在实施过程中以软件工程知识为基础的生成规则构成的知识系统与包含应用领域知识规则的专家系统相结合,构成这一应用领域软件的开发系统。采用智能模型的软件过程如图
智能模型所要解决的问题是特定领域的复杂问题,涉及大量的专业知识,而开发人员一般不是该领域的专家,他们对特定领域的熟悉需要一个过程,所以软件需求在初始阶段很难定义得很完整。因此,采用原型实现模型需要通过多次迭代来精化软件需求。
智能模型以知识作为处理对象,这些知识既有理论知识,也有特定领域的经验。在开发过程中需要将这些知识从书本中和特定领域的知识库中抽取出来(即知识获取),选择适当的方法进行编码(即知识表示)建立知识库。将模型、软件工程知识与特定领域的知识分别存入数据库,在这个过程中需要系统开发人员与领域专家的密切合作。
智能模型开发的软件系统强调数据的含义,并试图使用现实世界的语言表达数据的含义。该模型可以勘探现有的数据,从中发现新的事实方法指导用户以专家的水平解决复杂的问题。它以瀑布模型为基本框架,在不同开发阶段引入了原型实现方法和面向对象技术以克服瀑布模型的缺点,适应于特定领域软件和专家决策系统的开发。
6.增量模型
增量模型融合了瀑布模型的基本成分(重复应用)和原型实现的迭代特征,该模型采用随着日程时间的进展而交错的线性序列,每一个线性序列产生软件的一个可发布的“增量”。当使用增量模型时,第1个增量往往是核心的产品,即第1个增量实现了基本的需求,但很多补充的特征还没有发布。客户对每一个增量的使用和评估都作为下一个增量发布的新特征和功能,这个过程在每一个增量发布后不断重复,直到产生了最终的完善产品。增量模型强调每一个增量均发布一个可操作的产品。采用增量模型的软件过程如图
增量模型与原型实现模型和其他演化方法一样,本质上是迭代的,但与原型实现不一样的是其强调每一个增量均发布一个可操作产品。早期的增量是最终产品的“可拆卸”版本,但提供了为用户服务的功能,并且为用户提供了评估的平台。增量模型的特点是引进了增量包的概念,无须等到所有需求都出来,只要某个需求的增量包出来即可进行开发。虽然某个增量包可能还需要进一步适应客户的需求并且更改,但只要这个增量包足够小,其影响对整个项目来说是可以承受的。
采用增量模型的优点是人员分配灵活,刚开始不用投入大量人力资源。如果核心产品很受欢迎,则可增加人力实现下一个增量。当配备的人员不能在设定的期限内完成产品时,它提供了一种先推出核心产品的途径。这样即可先发布部分功能给客户,对客户起到镇静剂的作用。此外,增量能够有计划地管理技术风险。增量模型的缺点是如果增量包之间存在相交的情况且未很好处理,则必须做全盘系统分析,这种模型将功能细化后分别开发的方法较适应于需求经常改变的软件开发过程。
7.WINWIN模型*
WINWIN模型融合了螺旋模型的基本成分和原型实现的迭代特征,强调风险分析和标识。通过早期谈判使客户和开发者之间达成一致协议,它将变成进展到软件和系统定义的关键标准。WINWIN模型引入了3个里程碑,称为“抛锚点”。它可帮助建立一个生命周期的完全性,并提供在软件项目向前进展前的决策里程碑。采用WINWIN模型的软件过程如图
本质上,抛锚点表示了项目遍历螺旋时的3个不同的进展视图,第1个抛锚点称为“生存周期目标”,定义了一组针对每个主要软件工程活动的目标;第2个抛锚点称为“生存周期体系结构”,建立了当系统和软件体系结构被定义时必须满足的目标;第3个抛锚点称为“初始操作能力”,它表示一组目标,这些目标和将要安装/销售软件的安装前场地准备和将使用该软件的各方所需的帮助相关联。
WINWIN模型强调风险分析和标识,使得开发人员和用户对每个演化层出现的风险有所了解,继而做出应有的反应。采用WINWIN模型的优点是客户和开发者达到一种平衡,实现双赢,但是需要额外的谈判技巧。
螺旋模型提出了强调客户交流的一个框架活动,该活动的目标是从客户处诱导出项目需求。在理想情况下,开发人员简单地询问客户需要什么,而客户提供足够的细节进行下去,不幸的是这种情形很少发生。而在WINWIN模型中,客户和开发人员进入一个谈判过程,客户被要求在成本和应市之间的约束下平衡功能、性能和其他产品或系统特征。最好的谈判追求“双赢”结果,即通过谈判客户获得大部分系统的功能,而开发人员则获得现实和可达到的预算和时限。
8.原型实现模型
原型实现模型从需求收集开始,开发者和客户在一起定义软件的总体目标,标识出已知的需求,并规划出需要进一步定义的区域。然后是“快速设计”,即集中于软件中那些对用户/客户可见的部分的表示。这将导致原型的创建,并由用户/客户评估并进一步精化待开发软件的需求。逐步调整原型使其满足客户的要求,而同时也使开发者对将要做的事情有更好的理解。这个过程是迭代的,其流程从听取客户意见开始,随后是建造/修改原型、客户测试运行原型。然后往复循环,直到客户对原型满意为止。采用原型实现模型的软件过程如图
原型实现模型的最大特点是能够快速实现一个可实际运行的系统初步模型,供开发人员和用户进行交流和评审,以便较准确地获得用户的需求。该模型采用逐步求精方法使原型逐步完善,即每次经用户评审后修改、运行,不断重复得到双方认可。这个过程是迭代过程,它可以避免在瀑布模型冗长的开发过程中看不见产品雏形的现象。其优点一是开发工具先进,开发效率高,使总的开发费用降低,时间缩短;二是开发人员与用户交流直观,可以澄清模糊需求,调动用户的积极参与,能及早暴露系统实施后潜在的一些问题;三是原型系统可作为培训环境,有利于用户培训和开发同步,开发过程也是学习过程。
原型实现模型的缺点是产品原型在一定程度上限制了开发人员的创新,没有考虑软件的整体质量和长期的可维护性。由于达不到质量要求产品可能被抛弃,而采用新的模型重新设计,因此原型实现模型不适合嵌入式、实时控制及科学数值计算等大型软件系统的开发。
增量模型和原型模型都是从概要需求出发开发的,但二者有明显不同。增量模型是从一些不完整的系统需求出发开始开发,在开发过程中逐渐发现新的需求。然后进一步充实完善该系统,使之成为实际可用的系统;原型开发的目的是为了发现并建立一个完整并经过证实的需求规格说明,然后以此作为正式系统的开发基础。因此原型开发阶段的输出是需求规格说明,这是为了降低整个软件生成期的费用而拉大需求分析阶段的一种方法,大部分原型是“用完就扔”的类型。
9.敏捷开发
敏捷开发是一种以人为核心、迭代、循序渐进的开发方法。在敏捷开发中,软件项目的构建被切分成多个子项目,各个子项目的成果都经过测试,具备集成和可运行的特征。换言之,就是把一个大项目分为多个相互联系,但也可独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态。
敏捷建模(Agile Modeling,AM)的价值观包括了XP(Extreme Programming:极限编程)的四个价值观:沟通、简单、反馈、勇气,此外,还扩展了第五个价值观:谦逊。
敏捷开发是针对传统的瀑布开发模式的弊端而产生的一种新的开发模式,目标是提高开发效率和响应能力。除了原则和实践,模式也是很重要的,多研究模式及其应用可以使你更深层次的理解敏捷开发。
软件开发模型随着软件设计思想的改变而发展,经历了由最初以结构化程序设计思想为指导的瀑布模型等,到以面向对象思想为指导的喷泉模型等,到以构件开发思想为指导的基于体系结构的开发模型等,到现在的敏捷开发等。每次新的软件设计思想的突破都会出现新的软件开发过程模型,以达到提高软件的生产效率和质量为目标,提出新的解决“软件危机”问题的方案。
refurl:http://www.cnblogs.com/houkai/p/3563728.html
相关推荐
本章主要介绍Java Web应用程序开发常采用的开发模式,首先介绍Web程序中各组件之间的关系,然后,详细介绍Web程序的不同设计模式的设计方法和使用技巧。 主要有: 单纯的JSP页面编程 JSP+JavaBean设计模式 JSP+...
下面介绍几种常用的设计模式,包括单例模式、工厂模式、观察者模式、建造者模式、原型模式、适配器模式、桥接模式、组合模式、装饰器模式、外观模式、享元模式和策略模式。 单例模式(Singleton Pattern) 单例模式...
浅谈我国棚户区改造常用开发模式的比较、建议及案例应用.doc
模型算法大全(20+种常用算法模型+代码实现)模型算法大全(20+种常用算法模型+代码实现)模型算法大全(20+种常用算法模型+代码实现)模型算法大全(20+种常用算法模型+代码实现)模型算法大全(20+种常用算法模型+...
软件开发模型是软件工程中用于指导软件开发过程的一种结构框架,它描述了从需求收集到软件维护各个阶段之间的关系和流程。本文将对比分析三种常见的软件开发模型:瀑布模型、螺旋模型和变换模型。 1. 瀑布模型...
浅谈原型对象的常用开发模式 在软件开发中,原型对象是一个非常重要的概念,它提供了一种灵活和高效的方式来创建对象。但是,原型对象的开发模式也是多种多样的,这篇文章将为大家介绍三种常用的原型对象开发模式:...
Node.js 使用了一个事件驱动、非阻塞 I/O 模型,使其轻量又高效,非常适合构建数据密集型的实时应用。 在 Node.js 的生态系统中,开发包(npm 包)扮演了重要的角色。这些包是预编写好的模块,包含了各种功能,可以...
它提供了一种快速启动新项目的方式,并且内置了常用配置,如服务器、数据库连接等。 5. **Spring AOP**:面向切面编程(AOP)允许开发者定义“横切关注点”,例如日志、事务管理等,然后将它们模块化为独立的“切面...
在"软件开发常用图标ico.zip"这个压缩包中,包含了大约600个精心整理过的常用图标,对于开发者来说是一份非常实用的资源库。 1. **ICO文件格式**:ICO文件由多个位图图像组成,每个位图对应不同的尺寸和颜色深度,...
常用数学模型及建模方法.zip常用算法模型学习资料MATLAB源程序文档教程下载 常用数学模型及建模方法.zip常用算法模型学习资料MATLAB源程序文档教程下载 常用数学模型及建模方法.zip常用算法模型学习资料MATLAB源程序...
软件开发中常用的设计模式 设计模式是一种被反复使用的、已经经过验证的解决方案,可以使得软件系统更加灵活、可维护和可扩展。软件开发中常用的设计模式有23种,以下是其中的一些: 1. 单件模式(Singleton ...
以下是对标题和描述中提到的几种常用C#设计模式的详细解释: 1. **单例模式(Singleton)**: - 单例模式确保一个类只有一个实例,并提供全局访问点。在C#中,通常通过私有化构造函数和静态成员来实现。这样可以...
以下是一些关于软件开发中常用图标的相关知识点: 1. 图标设计原则: - 易识性:图标应当直观且易于理解,让用户一眼就能辨认出其代表的功能。 - 一致性:遵循平台或应用的风格指南,保持图标的统一性,以增强...
以下是对“Android开发常用图标”这一主题的详细阐述: 1. **启动图标(Launcher Icon)**:这是用户在手机主屏幕上看到的应用图标,代表着应用的面孔。设计时需遵循Material Design指南,确保在不同尺寸和背景下都...
软件工程-软件开发模型比较分析 1.2 常用软件开发模型比较分析 正如任何事物一样,软件也有其孕育、诞生、成长、成熟和衰亡的生存过程,一般称 其为"软件生命周期"。软件生命周期一般分为6个阶段,即制定计划、需求...
软件开发模型是软件工程中用于指导软件开发过程的框架,它们描述了软件生命周期中的各个阶段以及这些阶段之间的交互方式。本文将对三种常见的软件开发模型进行比较和分析:瀑布模型、螺旋模型和变换模型。 首先,...
对于"微信小程序开发常用PNG图标(1600个).zip"这个资源包,它提供了1600个专门针对微信小程序设计的PNG图标,这些图标涵盖了开发过程中可能需要用到的各种功能和场景。 1. 微信小程序:微信小程序是一种由腾讯公司...