1. coalesce(联合,合并,接合,发音cola-les)
2. repartition
1.coalesce
1. 示例代码
package spark.examples import org.apache.spark.{SparkContext, SparkConf} import org.apache.spark.SparkContext._ object SparkRDDCoalesce { def main(args : Array[String]) { val conf = new SparkConf().setAppName("SparkRDDDistinct").setMaster("local"); val sc = new SparkContext(conf); val rdd1 = sc.parallelize(List(1,8,2,1,4,2,7,6,2,3,1,19,21, 66,74,22,21,72,78,102), 8) val pairs = rdd1.coalesce(3, true); pairs.saveAsTextFile("file:///D:/coalesce-0-" + System.currentTimeMillis()); val pairs2 = rdd1.coalesce(3, false); pairs2.saveAsTextFile("file:///D:/coalesce-1-" + System.currentTimeMillis()); println(pairs.toDebugString) } }
1.1 依赖关系
(3) MappedRDD[4] at coalesce at SparkRDDCoalesce.scala:12 [] | CoalescedRDD[3] at coalesce at SparkRDDCoalesce.scala:12 [] | ShuffledRDD[2] at coalesce at SparkRDDCoalesce.scala:12 [] +-(8) MapPartitionsRDD[1] at coalesce at SparkRDDCoalesce.scala:12 [] | ParallelCollectionRDD[0] at parallelize at SparkRDDCoalesce.scala:11 []
1.2 计算结果
1.2.1 shuffle为true
part-00000
4
7
6
1
21
21
78
part-00001
1
2
2
19
66
102
part-00002
8
1
2
3
74
22
72
1.2.2 shuffle为false
part-00000
1
8
2
1
4
part-00001
2
7
6
2
3
1
19
part-00002
21
66
74
22
21
72
78
102
2. RDD依赖图
3.源代码
/** * Return a new RDD that is reduced into `numPartitions` partitions. * * This results in a narrow dependency, e.g. if you go from 1000 partitions * to 100 partitions, there will not be a shuffle, instead each of the 100 * new partitions will claim 10 of the current partitions. * * However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, * this may result in your computation taking place on fewer nodes than * you like (e.g. one node in the case of numPartitions = 1). To avoid this, * you can pass shuffle = true. This will add a shuffle step, but means the * current upstream partitions will be executed in parallel (per whatever * the current partitioning is). * * Note: With shuffle = true, you can actually coalesce to a larger number * of partitions. This is useful if you have a small number of partitions, * say 100, potentially with a few partitions being abnormally large. Calling * coalesce(1000, shuffle = true) will result in 1000 partitions with the * data distributed using a hash partitioner. */ def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null) : RDD[T] = { if (shuffle) { /** Distributes elements evenly across output partitions, starting from a random partition. */ val distributePartition = (index: Int, items: Iterator[T]) => { var position = (new Random(index)).nextInt(numPartitions) items.map { t => ///将items转换为(递增的Key,item)形式 // Note that the hash code of the key will just be the key itself. The HashPartitioner // will mod it with the number of total partitions. position = position + 1 ///整数的hashCode为其本身?是的,参见Java的Integer#hashCode方法 (position, t) } } : Iterator[(Int, T)] // include a shuffle step so that our upstream tasks are still distributed new CoalescedRDD( new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition), new HashPartitioner(numPartitions)), numPartitions).values } else { ///如果shuffle,则直接构造CoalescedRDD new CoalescedRDD(this, numPartitions) } }
2. repartition
/** * Return a new RDD that has exactly numPartitions partitions. * * Can increase or decrease the level of parallelism in this RDD. Internally, this uses * a shuffle to redistribute data. * * If you are decreasing the number of partitions in this RDD, consider using `coalesce`, * which can avoid performing a shuffle. */ def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = { coalesce(numPartitions, shuffle = true) }
可见repartition使用了shuffle为true的coalesce,主要用于对partition进行扩容(扩大partition),如果是窄化partition,考虑使用coalesce以避免使用shuffle(言外之意,是使用shuffle为false版本的coalesce)
相关推荐
结合代码详细描述RDD算子的执行流程,并配上执行流程图
Transformation 算子用于对 RDD 进行变换操作,例如 map、filter 等,这些操作是延迟计算的,只有在触发 Action 算子时才真正执行。Action 算子会触发 SparkContext 提交作业并返回结果给驱动程序或写入外部存储系统...
根据给定文件的信息,本文将详细介绍25个经典Spark算子的Java实现,并结合详细的注释及JUnit测试结果,帮助读者更好地理解Spark算子的工作原理及其应用方式。 ### Spark算子简介 在Apache Spark框架中,算子是用于...
`first`算子返回RDD中的第一个元素。这在需要快速获取数据集的代表值时非常方便。 5. `take`算子: `take`算子返回RDD中的前n个元素组成的数组。这对于获取数据样本或者有限的输出很有帮助。 6. `takeOrdered`...
- **示例**:若`rdd1 = sc.parallelize([1, 2, 3])`,`rdd2 = sc.parallelize([3, 4, 5])`,执行`rdd1.union(rdd2)`后,得到的新RDD为`[1, 2, 3, 3, 4, 5]`。 8. **`intersection(otherDataset)`** - **功能**:...
SparkCore篇02主要介绍了RDD的一些基础转换算子,这些算子是Spark处理数据的核心工具。以下是关于这些算子的详细说明: 1. **map()**:map算子用于对RDD(Resilient Distributed Dataset)中的每个元素进行操作。它...
spark rdd函数大全。spark rdd操作为core操作,虽然后续版本主要以dataset来操作,但是rdd操作也是不可忽略的一部分。
Spark对于大数据行业的实时处理数据来说,有着举足轻重的位置,特此学习整理了RDD 算子的各个含义,希望各位读者能够喜欢。谢谢
四、Spark 算子实践操作 下面是一个使用 Spark 算子的实践操作: 1. 首先,我们需要将数据放入 Hadoop 集群中。 ``` hdfs dfs -mkdir /spark hdfs dfs -put word.txt /spark/1.log hdfs dfs -put word.txt /spark/...
当Spark对数据操作和转换时,会自动将RDD中的数据分发到集群,并将操作并行化执行。 Spark中的RDD是一个不可变的分布式对象集合。每个RDD都倍分为多个分区,这些分区运行在集群中的不同节点。RDD可以包含Python、...
Spark思维导图之Spark RDD.png
大数据实验报告 Windows 环境下安装 Spark 及 RDD 编程和 Spark 编程实现 wordcount 本实验报告主要介绍了在 Windows 环境下安装 Spark 及 RDD 编程和 Spark 编程实现 wordcount 的步骤和过程。实验中首先安装了 ...
Spark算子实例maven版是基于Apache Spark框架的开发示例,主要针对的是使用Maven构建项目的开发者。Apache Spark是一个用于大规模数据处理的快速、通用且可扩展的开源框架,它提供了一种分布式、内存计算的编程模型...
Spark 算子是 Spark 框架中最基本的组成部分,它们是 Spark 程序的主要构建块。Spark 算子可以分为两类:Transformation 变换/转换算子和 Action 行动算子。 Transformation 变换/转换算子并不触发提交作业,完成...
### Spark Transformation和Action算子详解 #### 一、Transformation **Transformation** 在 Spark 中是指对 RDD(弹性分布式数据集)进行的各种转换操作。这些操作并不会立即执行,而是延迟执行,直到遇到 Action...
Spark 算子详解 Spark 是一个基于内存的分布式计算框架,提供了多种算子来实现数据的处理和转换。本文将详细介绍 Spark 中常用的 Transformations 算子,包括 map、mapPartitions、mapPartitionsWithIndex、flatMap...
"Spark 运行原理和 RDD 解密" Spark 是一个分布式计算框架,基于内存和磁盘,特别适合于迭代计算。Spark 的运行原理可以分为两大部分:Driver 端和 Executor 端。Driver 端负责提交任务,Executor 端负责执行任务...
在大数据处理框架Apache Spark中,RDD(弹性分布式数据集)是基础的数据处理抽象,它提供了容错、分布式数据操作的能力。而DataFrame和Dataset是Spark SQL中更高级的数据抽象,提供了更多的优化和易于使用的特点。...
### Spark RDD论文中文版知识点详述 #### 一、引言 Spark RDD(Resilient Distributed Datasets)作为Apache Spark的核心组件之一,在大数据处理领域扮演着至关重要的角色。本论文旨在探讨Spark RDD的设计理念及其在...