1、准备文件
1
|
wget http: //statweb.stanford.edu/~tibs/ElemStatLearn/datasets/spam.data
|
2、加载文件
1
|
scala> val inFile = sc.textFile( "/home/scipio/spam.data" )
|
输出
1
2
3
|
14 / 06 / 28 12 : 15 : 34 INFO MemoryStore: ensureFreeSpace( 32880 ) called with curMem= 65736 , maxMem= 311387750
14 / 06 / 28 12 : 15 : 34 INFO MemoryStore: Block broadcast_2 stored as values to memory (estimated size 32.1 KB, free 296.9 MB)
inFile: org.apache.spark.rdd.RDD[String] = MappedRDD[ 7 ] at textFile at <console>: 12
|
3、显示一行
1
|
scala> inFile.first() |
输出
1
2
3
4
5
6
7
8
9
10
|
14 / 06 / 28 12 : 15 : 39 INFO FileInputFormat: Total input paths to process : 1
14 / 06 / 28 12 : 15 : 39 INFO SparkContext: Starting job: first at <console>: 15
14 / 06 / 28 12 : 15 : 39 INFO DAGScheduler: Got job 0 (first at <console>: 15 ) with 1 output partitions (allowLocal= true )
14 / 06 / 28 12 : 15 : 39 INFO DAGScheduler: Final stage: Stage 0 (first at <console>: 15 )
14 / 06 / 28 12 : 15 : 39 INFO DAGScheduler: Parents of final stage: List()
14 / 06 / 28 12 : 15 : 39 INFO DAGScheduler: Missing parents: List()
14 / 06 / 28 12 : 15 : 39 INFO DAGScheduler: Computing the requested partition locally
14 / 06 / 28 12 : 15 : 39 INFO HadoopRDD: Input split: file:/home/scipio/spam.data: 0 + 349170
14 / 06 / 28 12 : 15 : 39 INFO SparkContext: Job finished: first at <console>: 15 , took 0.532360118 s
res2: String = 0 0.64 0.64 0 0.32 0 0 0 0 0 0 0.64 0 0 0 0.32 0 1.29 1.93 0 0.96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.778 0 0 3.756 61 278 1
|
4、函数运用
(1)map
1
2
3
4
5
6
7
8
9
10
11
12
13
|
scala> val nums = inFile.map(x=>x.split( ' ' ).map(_.toDouble))
nums: org.apache.spark.rdd.RDD[Array[Double]] = MappedRDD[ 8 ] at map at <console>: 14
scala> nums.first() 14 / 06 / 28 12 : 19 : 07 INFO SparkContext: Starting job: first at <console>: 17
14 / 06 / 28 12 : 19 : 07 INFO DAGScheduler: Got job 1 (first at <console>: 17 ) with 1 output partitions (allowLocal= true )
14 / 06 / 28 12 : 19 : 07 INFO DAGScheduler: Final stage: Stage 1 (first at <console>: 17 )
14 / 06 / 28 12 : 19 : 07 INFO DAGScheduler: Parents of final stage: List()
14 / 06 / 28 12 : 19 : 07 INFO DAGScheduler: Missing parents: List()
14 / 06 / 28 12 : 19 : 07 INFO DAGScheduler: Computing the requested partition locally
14 / 06 / 28 12 : 19 : 07 INFO HadoopRDD: Input split: file:/home/scipio/spam.data: 0 + 349170
14 / 06 / 28 12 : 19 : 07 INFO SparkContext: Job finished: first at <console>: 17 , took 0.011412903 s
res3: Array[Double] = Array( 0.0 , 0.64 , 0.64 , 0.0 , 0.32 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.64 , 0.0 , 0.0 , 0.0 , 0.32 , 0.0 , 1.29 , 1.93 , 0.0 , 0.96 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.778 , 0.0 , 0.0 , 3.756 , 61.0 , 278.0 , 1.0 )
|
(2)collecct
1
2
3
4
5
6
7
8
9
|
scala> val rdd = sc.parallelize(List( 1 , 2 , 3 , 4 , 5 ))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[ 9 ] at parallelize at <console>: 12
scala> val mapRdd = rdd.map( 2 *_)
mapRdd: org.apache.spark.rdd.RDD[Int] = MappedRDD[ 10 ] at map at <console>: 14
scala> mapRdd.collect 14 / 06 / 28 12 : 24 : 45 INFO SparkContext: Job finished: collect at <console>: 17 , took 1.789249751 s
res4: Array[Int] = Array( 2 , 4 , 6 , 8 , 10 )
|
(3)filter
1
2
3
4
5
6
|
scala> val filterRdd = sc.parallelize(List( 1 , 2 , 3 , 4 , 5 )).map(_* 2 ).filter(_> 5 )
filterRdd: org.apache.spark.rdd.RDD[Int] = FilteredRDD[ 13 ] at filter at <console>: 12
scala> filterRdd.collect 14 / 06 / 28 12 : 27 : 45 INFO SparkContext: Job finished: collect at <console>: 15 , took 0.056086178 s
res5: Array[Int] = Array( 6 , 8 , 10 )
|
(4)flatMap
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
scala> val rdd = sc.textFile( "/home/scipio/README.md" )
14 / 06 / 28 12 : 31 : 55 INFO MemoryStore: ensureFreeSpace( 32880 ) called with curMem= 98616 , maxMem= 311387750
14 / 06 / 28 12 : 31 : 55 INFO MemoryStore: Block broadcast_3 stored as values to memory (estimated size 32.1 KB, free 296.8 MB)
rdd: org.apache.spark.rdd.RDD[String] = MappedRDD[ 15 ] at textFile at <console>: 12
scala> rdd.count 14 / 06 / 28 12 : 32 : 50 INFO SparkContext: Job finished: count at <console>: 15 , took 0.341167662 s
res6: Long = 127
scala> rdd.cache res7: rdd.type = MappedRDD[ 15 ] at textFile at <console>: 12
scala> rdd.count 14 / 06 / 28 12 : 33 : 00 INFO SparkContext: Job finished: count at <console>: 15 , took 0.32015745 s
res8: Long = 127
scala> val wordCount = rdd.flatMap(_.split( ' ' )).map(x=>(x, 1 )).reduceByKey(_+_)
wordCount: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[ 20 ] at reduceByKey at <console>: 14
scala> wordCount.collect res9: Array[(String, Int)] = Array((means, 1 ), (under, 2 ), ( this , 4 ), (Because, 1 ), (Python, 2 ), (agree, 1 ), (cluster., 1 ), (its, 1 ), (YARN,, 3 ), (have, 2 ), (pre-built, 1 ), (MRv1,, 1 ), (locally., 1 ), (locally, 2 ), (changed, 1 ), (several, 1 ), (only, 1 ), (sc.parallelize( 1 , 1 ), (This, 2 ), (basic, 1 ), (first, 1 ), (requests, 1 ), (documentation, 1 ), (Configuration, 1 ), (MapReduce, 2 ), (without, 1 ), (setting, 1 ), ( "yarn-client" , 1 ), ([params]`., 1 ), (any, 2 ), (application, 1 ), (prefer, 1 ), (SparkPi, 2 ), (<http: //spark.apache.org/>,1), (version,3), (file,1), (documentation,,1), (test,1), (MASTER,1), (entry,1), (example,3), (are,2), (systems.,1), (params,1), (scala>,1), (<artifactId>hadoop-client</artifactId>,1), (refer,1), (configure,1), (Interactive,2), (artifact,1), (can,7), (file's,1), (build,3), (when,2), (2.0.X,,1), (Apac...
scala> wordCount.saveAsTextFile( "/home/scipio/wordCountResult.txt" )
|
(5)union
1
2
3
4
5
6
7
8
9
10
11
12
|
scala> val rdd = sc.parallelize(List(( 'a' , 1 ),( 'a' , 2 )))
rdd: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[ 10 ] at parallelize at <console>: 12
scala> val rdd2 = sc.parallelize(List(( 'b' , 1 ),( 'b' , 2 )))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[ 11 ] at parallelize at <console>: 12
scala> rdd union rdd2 res3: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[ 12 ] at union at <console>: 17
scala> res3.collect res4: Array[(Char, Int)] = Array((a, 1 ), (a, 2 ), (b, 1 ), (b, 2 ))
|
(6) join
1
2
3
4
5
6
7
8
9
10
11
12
|
scala> val rdd1 = sc.parallelize(List(( 'a' , 1 ),( 'a' , 2 ),( 'b' , 3 ),( 'b' , 4 )))
rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[ 10 ] at parallelize at <console>: 12
scala> val rdd2 = sc.parallelize(List(( 'a' , 5 ),( 'a' , 6 ),( 'b' , 7 ),( 'b' , 8 )))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[ 11 ] at parallelize at <console>: 12
scala> rdd1 join rdd2 res1: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = FlatMappedValuesRDD[ 14 ] at join at <console>: 17
res1.collect res2: Array[(Char, (Int, Int))] = Array((b,( 3 , 7 )), (b,( 3 , 8 )), (b,( 4 , 7 )), (b,( 4 , 8 )), (a,( 1 , 5 )), (a,( 1 , 6 )), (a,( 2 , 5 )), (a,( 2 , 6 )))
|
(7)lookup
1
2
3
|
val rdd1 = sc.parallelize(List(( 'a' , 1 ),( 'a' , 2 ),( 'b' , 3 ),( 'b' , 4 )))
rdd1.lookup( 'a' )
res3: Seq[Int] = WrappedArray( 1 , 2 )
|
(8)groupByKey
1
2
3
4
5
|
val wc = sc.textFile( "/home/scipio/README.md" ).flatMap(_.split( ' ' )).map((_, 1 )).groupByKey
wc.collect 14 / 06 / 28 12 : 56 : 14 INFO SparkContext: Job finished: collect at <console>: 15 , took 2.933392093 s
res0: Array[(String, Iterable[Int])] = Array((means,ArrayBuffer( 1 )), (under,ArrayBuffer( 1 , 1 )), ( this ,ArrayBuffer( 1 , 1 , 1 , 1 )), (Because,ArrayBuffer( 1 )), (Python,ArrayBuffer( 1 , 1 )), (agree,ArrayBuffer( 1 )), (cluster.,ArrayBuffer( 1 )), (its,ArrayBuffer( 1 )), (YARN,,ArrayBuffer( 1 , 1 , 1 )), (have,ArrayBuffer( 1 , 1 )), (pre-built,ArrayBuffer( 1 )), (MRv1,,ArrayBuffer( 1 )), (locally.,ArrayBuffer( 1 )), (locally,ArrayBuffer( 1 , 1 )), (changed,ArrayBuffer( 1 )), (sc.parallelize( 1 ,ArrayBuffer( 1 )), (only,ArrayBuffer( 1 )), (several,ArrayBuffer( 1 )), (This,ArrayBuffer( 1 , 1 )), (basic,ArrayBuffer( 1 )), (first,ArrayBuffer( 1 )), (documentation,ArrayBuffer( 1 )), (Configuration,ArrayBuffer( 1 )), (MapReduce,ArrayBuffer( 1 , 1 )), (requests,ArrayBuffer( 1 )), (without,ArrayBuffer( 1 )), ( "yarn-client" ,ArrayBuffer( 1 )), ([params]`.,Ar...
|
(9)sortByKey
1
2
3
4
|
val rdd = sc.textFile( "/home/scipio/README.md" )
val wordcount = rdd.flatMap(_.split( ' ' )).map((_, 1 )).reduceByKey(_+_)
val wcsort = wordcount.map(x => (x._2,x._1)).sortByKey( false ).map(x => (x._2,x._1))
wcsort.saveAsTextFile( "/home/scipio/sort.txt" )
|
升序的话,sortByKey(true)
转
http://my.oschina.net/scipio/blog/284957#OSC_h5_11
http://bit1129.iteye.com/blog/2171799
http://bit1129.iteye.com/blog/2171811
相关推荐
基于智能温度监测系统设计.doc
包括userCF,itemCF,MF,LR,POLY2,FM,FFM,GBDT+LR,阿里LS-PLM 基于深度学习推荐系统(王喆)
2023-04-06-项目笔记-第三百五十五阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.353局变量的作用域_353- 2024-12-22
和美乡村城乡融合发展数字化解决方案.docx
基于Python的深度学习图像识别系统是一个利用卷积神经网络(CNN)对图像进行分类的先进项目。该项目使用Python的深度学习库,如TensorFlow,构建和训练一个模型,能够自动识别和分类图像中的对象。系统特别适合于图像处理领域的研究和实践,如计算机视觉、自动驾驶、医疗影像分析等。 项目的核心功能包括数据预处理、模型构建、训练、评估和预测。用户可以上传自己的图像或使用预定义的数据集进行训练。系统提供了一个直观的界面,允许用户监控训练进度,并可视化模型的性能。此外,系统还包括了一个模型优化模块,通过调整超参数和网络结构来提高识别准确率。 技术层面上,该项目使用了Python编程语言,并集成了多个流行的机器学习库,如NumPy、Pandas、Matplotlib等,用于数据处理和可视化。模型训练过程中,系统会保存训练好的权重,以便后续进行模型评估和预测。用户可以通过简单的API调用,将新的图像输入到训练好的模型中,获取预测结果。
拳皇97.exe拳皇972.exe拳皇973.exe
基于python和协同过滤算法的电影推荐系统 基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法
DEV-CPP-RED-PANDA
Python语言求解旅行商问题,算法包括禁忌搜索、蚁群算法、模拟退火算法等。
pdfjs 用于在浏览器中查看/预览/打印pdf。 pdfjs 2.5.207 支持firefox/chrome/edge/ie11以上版本。 如果需要支持旧版本浏览器,可以使用这个,是未修改过的原版,支持打印和下载按钮。亲测有效。 pdf 4.9.155分两个包: pdfjs-4.9.155-dist.zip pdfjs-4.9.155-legacy-dist.zip
建设项目现场高温人员中暑事故应急预案
数据结构上机实验大作业-线性表选题.zip
【资源说明】 基于高德地图的校园导航全部资料+详细文档+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
【静态站群程序视频演示,只有视频,不含程序,下载须知】【静态站群程序视频演示,只有视频,不含程序,下载须知】全自动批量建站快速养权重站系统【纯静态html站群版】:(GPT4.0自动根据关键词写文章+自动发布+自定义友链+自动文章内链+20%页面加提权词)
9.30 SWKJ 男头7张+女头2张.zip
项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea、vscode 数据库:MySql5.7以上 部署环境:maven 数据库工具:navicat
一个通过单片机在各种屏幕上显示中文的解决方案.7z
图像
一、用户管理功能 用户注册与登录 学生注册:学生可以通过手机号、邮箱、社交账号等方式注册,填写个人信息(如姓名、年龄、学校等)。 家长/监护人账户:支持家长/监护人注册并管理学生账户,查看学习进度和成绩。 教师账户:教师可以注册并设置个人资料,上传资质认证文件。 管理员账户:管理员负责整个系统的管理,包括用户管理、课程管理、平台设置等。 用户权限管理 角色权限:系统根据用户类型(学生、家长、教师、管理员)分配不同权限,确保信息安全。 家长监督:家长可以查看子女的学习进度、成绩和教师反馈,参与学习监督。 个人资料管理 用户可以在个人中心更新基本信息,设置个人头像、联系方式、密码等。 支持学籍信息的维护,例如学生的年级、班级、课程历史等。 二、课程管理功能 课程设置 课程创建与编辑:教师或管理员可以创建和编辑课程内容,上传课件、视频、文档等教学材料。 课程分类:根据学科、年级、难度等维度进行课程分类,方便学生浏览和选择。 课程排课:管理员可以设置课程的时间表、教学内容和授课教师,并调整上课时间和频率。 课程安排与通知 课程预约:学生可以在线选择并预约感兴趣的课程,系统根据学生的时
内容概要:本文档介绍了英特尔2021年至2024年的网络连接性产品和智能处理单元(IPU)的战略和技术路线图。涵盖了从10GbE到200GbE的不同系列以太网适配器的特性、性能和发布时间。详细列出了各个产品的关键功能,如PCIe接口、安全特性、RDMA支持等。同时,介绍了IPU的发展计划,包括200G、400G和800G的不同代次产品的性能提升和新的功能特点。 适合人群:从事网络工程、数据中心管理、IT架构设计的专业技术人员。 使用场景及目标:本文档主要用于了解英特尔未来几年在以太网适配器和IPU领域的技术和产品规划,帮助企业在采购和部署网络设备时做出决策。同时,为研究人员提供最新技术发展趋势的参考。 其他说明:文档内容涉及的技术细节和时间表可能会有变动,请以英特尔官方发布的最新信息为准。