`
gao_xianglong
  • 浏览: 469106 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

分享一篇毕玄的《为什么不建议<=3G的情况下使用CMS GC》

    博客分类:
  • JVM
 
阅读更多

为什么不建议<=3G的情况下使用CMS GC

之前曾经有讲过在heap size<=3G的情况下完全不要考虑CMS GC,在heap size>3G的情况下也优先选择ParallelOldGC,而不是CMS GC,只有在暂停时间无法接受的情况下才考虑CMS GC(不过当然,一般来说在heap size>8G后基本上都得选择CMS GC,否则那暂停时间是相当吓人的,除非是完全不在乎响应时间的应用),这其实也是官方的建议(每年JavaOne的GC Tuning基本都会这么讲)。

为什么给了一个这么“武断”的建议呢,不是我对CMS GC有什么不爽,相反CMS GC一直是我很热爱的一种GC实现,之所以建议在<=3G的情况下完全不要考虑CMS GC,主要出于以下几点考虑:

1、触发比率不好设置
在JDK 1.6的版本中CMS GC的触发比率默认为old使用到92%时,假设3G的heap size,那么意味着旧生代大概就在1.5G--2.5G左右的大小,假设是92%触发,那么意味着这个时候旧生代只剩120M--200M的大小,通常这点大小很有可能是会导致不够装下新生代晋生的对象,因此需要调整触发比率,但由于heap size比较小,这个时候到底设置为多少是挺难设置的,例如我看过heap size只有1.5G,old才800m的情况下,还使用CMS GC的,触发比率还是80%,这种情况下就悲催了,意味着旧生代只要使用到640m就触发CMS GC,只要应用里稍微把一些东西cache了就会造成频繁的CMS GC。

CMS GC是一个大部分时间不暂停应用的GC,就造成了需要给CMS GC留出一定的时间(因为大部分时间不暂停应用,这也意味着整个CMS GC过程的完成时间是会比ParallelOldGC时的一次Full GC长的),以便它在进行回收时内存别分配满了,而heap size本来就小的情况下,留多了嘛容易造成频繁的CMS GC,留少了嘛会造成CMS GC还在进行时内存就不够用了,而在不够用的情况下CMS GC会退化为采用Serial Full GC来完成回收动作,这个时候就慢的离谱了。

2、抢占CPU
CMS GC大部分时间和应用是并发的,所以会抢占应用的CPU,通常在CMS GC较频繁的情况下,可以很明显看到一个CPU会消耗的非常厉害。

3、YGC速度变慢
由于CMS GC的实现原理,导致对象从新生代晋升到旧生代时,寻找哪里能放下的这个步骤比ParallelOld GC是慢一些的,因此就导致了YGC速度会有一定程度的下降。

4、碎片问题带来的严重后果
CMS GC最麻烦的问题在于碎片问题,同样是由于实现原理造成的,CMS GC为了确保尽可能少的暂停应用,取消了在回收对象所占的内存空间后Compact的过程,因此就造成了在回收对象后整个old区会形成各种各样的不连续空间,自然也就产生了很多的碎片,碎片会造成什么后果呢,会造成例如明明旧生代还有4G的空余空间,而新生代就算全部是存活的1.5g对象,也还是会出现promotion failed的现象,而在出现这个现象的情况下CMS GC多数会采用Serial Full GC来解决问题。

碎片问题最麻烦的是你完全不知道它什么时候会出现,因此有可能会造成某天高峰期的时候应用突然来了个长暂停,于是就悲催了,对于很多采用了类似心跳来维持长连接或状态的分布式场景而言这都是灾难,这也是Azul的Zing JVM相比而言最大的优势(可实现不暂停的情况下完成Compact,解决碎片问题)。

目前对于这样的现象我们唯一的解决办法都是选择在低峰期主动触发Full GC(执行jmap -histo:live [pid])来避免碎片问题,但这显然是一个很龌蹉的办法(因为同样会对心跳或维持状态的分布式场景造成影响)。

5、CMS GC的”不稳定“性
如果关注过我在之前的blog记录的碰到的各种Java问题的文章(可在此查看),就会发现碰到过很多各种CMS GC的诡异问题,尽管里面碰到的大部分BUG目前均已在新版本的JVM修复,但谁也不知道是不是还有问题,毕竟CMS GC的实现是非常复杂的(因为要在尽可能降低应用暂停时间的情况下还保持对象引用的扫描不要出问题),而ParallelOldGC的实现相对是更简单很多的,因此稳定性相对高多了。
而且另外一个不太好的消息是JVM Team的精力都已转向G1GC和其他的一些方面,CMS GC的投入已经很少了(这也正常,毕竟G1GC确实是方向)。

在大内存的情况下,CMS GC绝对是不二的选择,而且Java在面对内存越来越大的情况下,必须采用这种大部分时候不暂停应用的方式,否则Java以后就非常悲催了,G1GC在CMS GC的基础上,有了很多的进步,尤其是会做部分的Compact,但仍然碎片问题还是存在的,哎…

Java现在在大内存的情况下还面临的另外两个大挑战:
1. 分析内存的堆栈太麻烦,例如如果在大内存的情况下出现OOM,那简直就是杯具,想想dump出一个几十G的文件,然后还要分析,这得多长的时间呀,真心希望JDK在这方面能有更好的工具…
2. 对象结构不够紧凑,导致在内存空间有很高要求的场景Java劣势明显,不过这也是新版本JDK会重点优化的地方。
至于在cpu cache miss等控制力度上不如C之类的语言,那是更没办法的,相比带来的开发效率提升,也只能认了,毕竟现在多数场景都是工程性质和大规模人员的场景,因此开发效率、可维护性会更重要很多。

推荐几篇相关的文章:
1. A Generational Mostly-concurrent GC(CMS GC的理论论文)
2. The Pauseless GC Algorithm(可以管窥下Zing是如何实现不暂停compact的)
3. Understanding CMS GC log

最近在纠结一个问题,求有想法或建议的回下消息。
在一个打某种日志的场景中,如何做到避免打日志导致应用受影响,首先异步等是肯定的,但由于日志量巨大,所以仅仅异步还是会造成很大的IO压力,但限流的话到底怎么限比较合理呢?(例如根据IOPS?但IOPS的话还得获取硬件信息等,挺折腾,另外毕竟还是想做到在能支撑的情况下尽可能不要丢弃这些日志信息),有此类场景经验来给点建议吧。

=============================
欢迎关注微信公众号:hellojavacases

关于此微信号:
分享Java问题排查的Case、Java业界的动态和新技术、Java的一些小知识点Test,以及和大家一起讨论一些Java问题或场景,这里只有Java细节的分享,没有大道理、大架构和大框架。

公众号上发布的消息都存放在http://hellojava.info上。

分享到:
评论

相关推荐

    JVM堆模型

    《Sun_JDK_1.6内存管理--使用篇-毕玄.pdf》提供了实践指导,帮助我们根据应用特性选择合适的垃圾收集器,调整内存参数,进行性能调优。 总结,JVM堆模型的理解和优化是Java开发者必须掌握的关键技能。通过对堆内存...

    实时监控体系:基于Prometheus的API性能指标可视化方案.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    5个提升DeepSeekAPI生成质量的调参技巧,开发者必看!.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    ACM动态规划模板-区间修改线段树问题模板

    ACM动态规划模板-区间修改线段树问题模板

    深度解析C语言调试技巧:VSCode+GDB实战排错指南.pdf

    # 踏入C语言的奇妙编程世界 在编程的广阔宇宙中,C语言宛如一颗璀璨恒星,以其独特魅力与强大功能,始终占据着不可替代的地位。无论你是编程小白,还是有一定基础想进一步提升的开发者,C语言都值得深入探索。 C语言的高效性与可移植性令人瞩目。它能直接操控硬件,执行速度快,是系统软件、嵌入式开发的首选。同时,代码可在不同操作系统和硬件平台间轻松移植,极大节省开发成本。 学习C语言,能让你深入理解计算机底层原理,培养逻辑思维和问题解决能力。掌握C语言后,再学习其他编程语言也会事半功倍。 现在,让我们一起开启C语言学习之旅。这里有丰富教程、实用案例、详细代码解析,助你逐步掌握C语言核心知识和编程技巧。别再犹豫,加入我们,在C语言的海洋中尽情遨游,挖掘无限可能,为未来的编程之路打下坚实基础!

    10个高效调用DeepSeekAPI的技巧:从请求优化到缓存策略.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    基于Python语言的PersonRelationKnowledgeGraph设计源码

    本项目为Python语言开发的PersonRelationKnowledgeGraph设计源码,总计包含49个文件,涵盖19个.pyc字节码文件、12个.py源代码文件、8个.txt文本文件、3个.xml配置文件、3个.png图片文件、2个.md标记文件、1个.iml项目配置文件、1个.cfg配置文件。该源码库旨在构建一个用于表示和查询人物关系的知识图谱系统。

    成本优化指南:通过Token计算模型将API费用降低57%的秘诀.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    大华智能物联平台,的对接其他接口的API,可以获得视频拉流的flv/hls/rstp 的拉流地址,demo项目为springBoot项目,可以通过摄像头的视频通道,获取到实时拉流的uRl

    rtsp实时预览接口URL:/evo-apigw/admin/API/MTS/Video/StartVideo HLS、FLV、RTMP实时预览接口方式 :接口URL/evo-apigw/admin/API/video/stream/realtime 参数名 必选 类型 说明 data true string Json串 +channelId true string 视频通道编码 +streamType true string 码流类型:1=主码流, 2=辅码流,3=辅码流2 +type true string 协议类型:hls,hlss,flv,flvs,ws_flv,wss_flv,rtmp hls:http协议,m3u8格式,端口7086; hlss:https协议,m3u8格式,端口是7096; flv:http协议,flv格式,端口7886; flvs:https协议,flv格式,端口是7896; ws_flv:ws协议,flv格式,端口是7886; wss_flv:wss协议,flv格式,端口是7896; rtmp:rtmp协议,端口是1975;

    Simulink永磁风机飞轮储能系统二次调频技术研究:频率特性分析与参数优化,Simulink永磁风机飞轮储能二次调频技术:系统频率特性详解及参数优化研究参考详实文献及两区域系统应用,simulink

    Simulink永磁风机飞轮储能系统二次调频技术研究:频率特性分析与参数优化,Simulink永磁风机飞轮储能二次调频技术:系统频率特性详解及参数优化研究参考详实文献及两区域系统应用,simulink永磁风机飞轮储能二次调频,系统频率特性如下,可改变调频参数改善频率。 参考文献详细,两区域系统二次调频。 ,核心关键词: 1. Simulink 2. 永磁风机 3. 飞轮储能 4. 二次调频 5. 系统频率特性 6. 调频参数 7. 改善频率 8. 参考文献 9. 两区域系统 以上关键词用分号(;)分隔,结果为:Simulink;永磁风机;飞轮储能;二次调频;系统频率特性;调频参数;改善频率;参考文献;两区域系统。,基于Simulink的永磁风机与飞轮储能系统二次调频研究:频率特性及调频参数优化

    MATLAB驱动的ASR防滑转模型:PID与对照控制算法对比,冰雪路面条件下滑移率与车速轮速对照展示,MATLAB驱动的ASR防滑转模型:PID与对照控制算法对比,冰雪路面条件下滑移率与车速轮速对照图

    MATLAB驱动的ASR防滑转模型:PID与对照控制算法对比,冰雪路面条件下滑移率与车速轮速对照展示,MATLAB驱动的ASR防滑转模型:PID与对照控制算法对比,冰雪路面条件下滑移率与车速轮速对照图展示,MATLAB驱动防滑转模型ASR模型 ASR模型驱动防滑转模型 ?牵引力控制系统模型 选择PID控制算法以及对照控制算法,共两种控制算法,可进行选择。 选择冰路面以及雪路面,共两种路面条件,可进行选择。 控制目标为滑移率0.2,出图显示车速以及轮速对照,出图显示车辆轮胎滑移率。 模型简单,仅供参考。 ,MATLAB; ASR模型; 防滑转模型; 牵引力控制系统模型; PID控制算法; 对照控制算法; 冰路面; 雪路面; 控制目标; 滑移率; 车速; 轮速。,MATLAB驱动的ASR模型:PID与对照算法在冰雪路面的滑移率控制研究

    芯片失效分析方法介绍 -深入解析芯片故障原因及预防措施.pptx

    芯片失效分析方法介绍 -深入解析芯片故障原因及预防措施.pptx

    4131_127989170.html

    4131_127989170.html

    PostgreSQL自动化部署与优化脚本:智能化安装、安全加固与监控集成

    内容概要:本文提供了一个全面的PostgreSQL自动化部署解决方案,涵盖智能环境适应、多平台支持、内存与性能优化以及安全性加强等重要方面。首先介绍了脚本的功能及其调用方法,随后详细阐述了操作系统和依赖软件包的准备过程、配置项的自动生成机制,还包括对实例的安全性和监控功能的强化措施。部署指南给出了具体的命令操作指导,便于新手理解和执行。最后强调了该工具对于不同硬件条件和服务需求的有效应对能力,特别是针对云计算环境下应用的支持特点。 适合人群:对PostgreSQL集群运维有一定基础并渴望提高效率和安全性的数据库管理员及工程师。 使用场景及目标:本脚本能够帮助企业在大规模部署时减少人工介入时间,确保系统的稳定性与高性能,适用于各类需要稳定可靠的数据库解决方案的企业或机构,特别是在大数据量和高并发事务处理场合。 其他说明:文中还提及了一些高级功能如自动备份、流复制等设置步骤,使得该方案不仅可以快速上线而且能满足后续维护和发展阶段的要求。同时提到的技术性能数据也为用户评估其能否满足业务需求提供了直观参考。

    房地产开发合同[示范文本].doc

    房地产开发合同[示范文本].doc

    成本优化实战:DeepSeekAPI的Tokens计算与计费策略拆解.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    安全必读:DeepSeek接口调用中的数据加密与合规实践.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    工程技术承包合同[示范文本].doc

    工程技术承包合同[示范文本].doc

    蓝桥杯开发赛作品源码【基于C语言】

    蓝桥杯开发赛【作品源码】

    深度解析DeepSeek语义分析API:实现情感分析与意图识别的进阶技巧.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

Global site tag (gtag.js) - Google Analytics