HBase性能优化方法总结(四):数据计算
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法。有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客。
下面是本文总结的第四部分内容:数据计算相关的优化方法。
4. 数据计算
4.1 服务端计算
Coprocessor运行于HBase RegionServer服务端,各个Regions保持对与其相关的coprocessor实现类的引用,coprocessor类可以通过RegionServer上classpath中的本地jar或HDFS的classloader进行加载。
目前,已提供有几种coprocessor:
Coprocessor:提供对于region管理的钩子,例如region的open/close/split/flush/compact等;
RegionObserver:提供用于从客户端监控表相关操作的钩子,例如表的get/put/scan/delete等;
Endpoint:提供可以在region上执行任意函数的命令触发器。一个使用例子是RegionServer端的列聚合,这里有代码示例。
以上只是有关coprocessor的一些基本介绍,本人没有对其实际使用的经验,对它的可用性和性能数据不得而知。感兴趣的同学可以尝试一下,欢迎讨论。
4.2 写端计算
4.2.1 计数
HBase本身可以看作是一个可以水平扩展的Key-Value存储系统,但是其本身的计算能力有限(Coprocessor可以提供一定的服务端计算),因此,使用HBase时,往往需要从写端或者读端进行计算,然后将最终的计算结果返回给调用者。举两个简单的例子:
PV计算:通过在HBase写端内存中,累加计数,维护PV值的更新,同时为了做到持久化,定期(如1秒)将PV计算结果同步到HBase中,这样查询端最多会有1秒钟的延迟,能看到秒级延迟的PV结果。
分钟PV计算:与上面提到的PV计算方法相结合,每分钟将当前的累计PV值,按照rowkey + minute作为新的rowkey写入HBase中,然后在查询端通过scan得到当天各个分钟以前的累计PV值,然后顺次将前后两分钟的累计PV值相减,就得到了当前一分钟内的PV值,从而最终也就得到当天各个分钟内的PV值。
4.2.2 去重
对于UV的计算,就是个去重计算的例子。分两种情况:
如果内存可以容纳,那么可以在Hash表中维护所有已经存在的UV标识,每当新来一个标识时,通过快速查找Hash确定是否是一个新的UV,若是则UV值加1,否则UV值不变。另外,为了做到持久化或提供给查询接口使用,可以定期(如1秒)将UV计算结果同步到HBase中。
如果内存不能容纳,可以考虑采用Bloom Filter来实现,从而尽可能的减少内存的占用情况。除了UV的计算外,判断URL是否存在也是个典型的应用场景。
4.3 读端计算
如果对于响应时间要求比较苛刻的情况(如单次http请求要在毫秒级时间内返回),个人觉得读端不宜做过多复杂的计算逻辑,尽量做到读端功能单一化:即从HBase RegionServer读到数据(scan或get方式)后,按照数据格式进行简单的拼接,直接返回给前端使用。当然,如果对于响应时间要求一般,或者业务特点需要,也可以在读端进行一些计算逻辑。
5. 总结
作为一个Key-Value存储系统,HBase并不是万能的,它有自己独特的地方。因此,基于它来做应用时,我们往往需要从多方面进行优化改进(表设计、读表操作、写表操作、数据计算等),有时甚至还需要从系统级对HBase进行配置调优,更甚至可以对HBase本身进行优化。这属于不同的层次范畴。
总之,概括来讲,对系统进行优化时,首先定位到影响你的程序运行性能的瓶颈之处,然后有的放矢进行针对行的优化。如果优化后满足你的期望,那么就可以停止优化;否则继续寻找新的瓶颈之处,开始新的优化,直到满足性能要求。
以上就是从项目开发中总结的一点经验,如有不对之处,欢迎大家不吝赐教。
分享到:
相关推荐
7. **HBase运维参考**:在提供的“hbase运维参考手册(项目实战).docx”文档中,详细介绍了HBase的日常维护、故障排查和性能优化方法,包括但不限于日志分析、监控指标解读、常见问题解决等,对于实际运维工作具有很...
在HBase性能优化的过程中,表设计和RowKey的设计是至关重要的。预分区是表设计的一个重要环节,目的是避免因表的自动split导致的资源消耗和性能影响。预分区可以根据业务需求预先设定rowkey的范围,比如在例子中,...
本文主要探讨了HBase服务器端的读性能优化策略,这些策略可以帮助解决读延迟大、资源消耗高和负载不均衡等问题。以下是针对四个关键优化领域的详细说明: 1. **读请求均衡优化**: - 原理:读请求不均衡可能导致...
在本分享总结中,我们将深入探讨“HBase_介绍”和“HBase云存储”的相关主题,这将涵盖HBase的基础知识、其架构原理、在云计算环境中的应用以及相关的源码解析。首先,我们从HBase的基本概念和功能入手。 HBase是一...
- **性能优化**:通过对Coprocessor框架的深入理解,可以发现优化点,如减少网络传输开销、提高计算效率等。 - 例如,在进行复杂的过滤操作时,可以在客户端进行初步筛选后再将数据发送到服务器端处理,这样可以...
确保HBase和Hadoop版本兼容是成功部署的关键,因为不兼容的版本可能会导致各种问题,如数据丢失、性能下降或服务不可用。在实际生产环境中,应该根据项目需求选择合适的HBase和Hadoop版本,以保证系统的稳定性和高效...
### HBase海量数据全量导入方法详解 在大数据领域,HBase作为一款分布式、版本化的宽列存储NoSQL数据库,以其高效的数据读取能力而著称。然而,在面对大规模数据导入时,其compaction机制可能会成为性能瓶颈。本文...
- **第4章:HBase表设计**:讲解如何有效地设计HBase表结构以满足特定的应用需求,包括如何选择合适的列族、如何优化数据模型以提高查询性能等。 - **第5章:通过Coprocessors扩展HBase**:Coprocessors是HBase中...
本研究文档题为《基于HBase的遥感数据分布式存储与查询方法研究》,它针对遥感数据处理中的关键问题,如单节点故障、扩展性低和处理效率低,提出了一种新的数据分布式存储与查询方案。以下是对文档内容的详细解析和...
在HBase中,性能优化是确保大数据平台高效运行的关键步骤。本文主要关注应用程序设计与开发层面的优化策略,包括表的设计、写表操作、读表操作以及数据计算。以下是具体的优化点: 1. **表的设计** - **Pre-...
12. **最佳实践**:文档中会包含实际操作中的最佳实践,如合理设置HBase的配置参数、优化数据模型、正确处理数据导入导出等,以提升整体系统效率。 综上所述,《Cloudera-HBase最佳实践及优化》是一份深入探讨HBase...
《HBase在淘宝的应用与优化》一文详细阐述了阿里巴巴集团旗下淘宝网如何利用Apache HBase这一分布式数据库系统解决大规模数据处理的问题。以下是对该文关键知识点的深入解析: ### 使用HBase的动机 淘宝选择HBase...
书中详细阐述了Hbase的核心原理、生态环境以及在实际项目中的架构设计与性能优化策略,旨在帮助读者全面理解并掌握Hbase的运用。 Hbase作为Apache Hadoop生态系统的一部分,是一款开源的、非关系型的分布式数据库,...
《Spark大数据处理:技术、应用与性能优化》这本书深入探讨了Apache Spark这一高效的大数据处理框架,涵盖了其核心概念、实际应用以及性能调优策略。Spark以其内存计算、高并发和低延迟的优势,在大数据领域中得到了...
在大数据处理领域,基于Hadoop和HBase的大规模海量数据去重是一个常见的需求。Hadoop是Apache开源项目,提供了一个分布式文件系统(HDFS)和MapReduce计算框架,旨在处理和存储海量数据。HBase是建立在Hadoop之上的...
【Spark与HBase集成】 Spark是一个快速、通用且可扩展的数据处理引擎,而HBase是一个分布式的、面向列的NoSQL数据库。在大数据处理场景中,...要注意的是,实际应用中还需要考虑错误处理、资源管理、性能优化等因素。